Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{4}{x-2}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)
\(=\dfrac{x+4x+8+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)
\(=\dfrac{6\left(x+1\right)\cdot x\left(x+2\right)}{3\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2x}{x-2}\)
a, ĐKXĐ: x\(\ne\) 1;-1;2
b, A= \(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)
=\(\left(\frac{2x^2-2x}{2\left(x+1\right)\left(x-1\right)}+\frac{2x+2}{2\left(x+1\right)\left(x-1\right)}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-2}{x+1}\)
=\(\frac{2x^2-2x+2x+2+4x}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{2x^2+4x+2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{2\left(x+1\right)^2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{x-2}{x-1}\)
c, Khi x= -1
→A= \(\frac{-1-2}{-1-1}\)
= -3
Vậy khi x= -1 thì A= -3
Câu d thì mình đang suy nghĩ nhé, mình sẽ quay lại trả lời sau ^^
a,ĐKXĐ:x#1; x#-1; x#2
b,Ta có:
A=\(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)
=\(\left(\frac{x\left(x-1\right)2}{\left(x+1\right)\left(x-1\right)2}+\frac{\left(x+1\right)2}{\left(x-1\right)\left(x+1\right)2}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right):\frac{x+1}{x-2}\)
=\(\frac{2x^2-2x+2x+2+4x}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{2x^2+4x+2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{2\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{x-2}{x+1}\)
c,Tại x=-1 ,theo ĐKXĐ x#-1 \(\Rightarrow\)A không có kết quả
d,Để A có giá trị nguyên \(\Rightarrow\frac{x-2}{x+1}\)có giá trị nguyên
\(\Leftrightarrow x-2⋮x+1\)
\(\Leftrightarrow x+1-3⋮x+1\)
Mà \(x+1⋮x+1\Rightarrow3⋮x+1\)
\(\Rightarrow x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x\in\left\{0;-2;2;-4\right\}\)
Mà theo ĐKXĐ x#2\(\Rightarrow x\in\left\{0;-2;-4\right\}\)
Vậy \(x\in\left\{0;-2;-4\right\}\)thì a là số nguyên
a) Biểu thức A xác định khi \(\hept{\begin{cases}x+1\ne0\\x^2-1\ne0\end{cases}\Leftrightarrow}\)\(\begin{cases}x\ne1\\x\ne\pm1\end{cases}\)(bạn thông cảm chỗ này mình ko viết được ngoặc nhọn)
Vậy biểu thức A xác định khi \(x\ne\pm1\)
b)\(A=\frac{2x}{x+1}+\frac{1+2x}{x^2-1}=\frac{2x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{1+2x}{x^2-1}=\frac{2x^2-2x}{x^2-1}+\frac{1+2x}{x^2-1}\)
\(=\frac{2x^2+1}{x^2-1}=\frac{2x^2-2+3}{x^2-1}=\frac{2\left(x^2-1\right)+3}{x^2-1}=\frac{2\left(x^2-1\right)}{x^2-1}+\frac{3}{x^2-1}=2+\frac{3}{x^2-1}\)
c) A nguyên khi và chỉ khi \(\frac{3}{x^2-1}\) nguyên
<=>3 chia hết cho x2-1
<=>\(x^2-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
<=>\(x^2\in\left\{-2;0;2;4\right\}\)
Vì \(x^2\ge0\Rightarrow x^2\in\left\{0;2;4\right\}\)<=>\(x\in\left\{-2;0;\sqrt{2};2\right\}\)
Vì \(x\in Z\Rightarrow x\in\left\{-2;0;2\right\}\)
Vậy A nguyên khi \(x\in\left\{-2;0;2\right\}\)
a)A xác khi \(\hept{\begin{cases}x+1\ne0\\x^2-1\ne0\end{cases}\Rightarrow x\ne\left\{-1,1\right\}}\)
b) \(A=\frac{2x}{x+1}+\frac{1+2x}{\left(x-1\right)\left(x+1\right)}=\frac{2x\left(x-1\right)+1+2x}{\left(x-1\right)\left(x+1\right)}=\frac{2x^2+1}{x^2-1}=2+\frac{3}{\left(x^2\right)-1}\)
c)x^2-1=U(3)={-3,-1,1,3}
x^2={-2,0,2,4}
x={-2,0,2}
1. ĐKXĐ: \(x\ne\pm1\)
2. \(A=\left(\dfrac{x+1}{x-1}-\dfrac{x+3}{x+1}\right)\cdot\dfrac{x+1}{2}\)
\(=\dfrac{\left(x+1\right)^2-\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{x^2+2x+1-x^2+4x-3}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{6x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{2\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x-3}{x-1}\)
3. Tại x = 5, A có giá trị là:
\(\dfrac{5-3}{5-1}=\dfrac{1}{2}\)
4. \(A=\dfrac{x-3}{x-1}\) \(=\dfrac{x-1-3}{x-1}=1-\dfrac{3}{x-1}\)
Để A nguyên => \(3⋮\left(x-1\right)\) hay \(\left(x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=1\\x-1=-1\\x-1=3\\x-1=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\left(tmđk\right)\\x=0\left(tmđk\right)\\x=4\left(tmđk\right)\\x=-2\left(tmđk\right)\end{matrix}\right.\)
Vậy: A nguyên khi \(x=\left\{2;0;4;-2\right\}\)
a: ĐKXĐ: x<>1; x<>-1
b: \(A=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)
c: Để A nguyên thì x+1-2 chia hết cho x+1
=>\(x+1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{0;-2;-3\right\}\)
a) \(ĐKXĐ:x\ne\pm1\)
\(A=\frac{x^3-2x^2+x}{x^2-1}\)
\(\Leftrightarrow A=\frac{x\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow A=\frac{x^2-x}{x+1}\)
b) Để A có giá trị nguyên
\(\Leftrightarrow\frac{x^2-x}{x+1}\inℤ\)
\(\Leftrightarrow x^2-x⋮x+1\)
\(\Leftrightarrow x^2-x-2+2⋮x+1\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)+2⋮x+1\)
\(\Leftrightarrow2⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Leftrightarrow x\in\left\{-2;0;-3;1\right\}\)
Ta sẽ loại các giá trị ktm
\(\Leftrightarrow x\in\left\{-2;0;-3\right\}\)
Vậy để \(A\inℤ\Leftrightarrow x\in\left\{-2;0;-3\right\}\)