Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) x≠2x≠2
Bài 2:
a) x≠0;x≠5x≠0;x≠5
b) x2−10x+25x2−5x=(x−5)2x(x−5)=x−5xx2−10x+25x2−5x=(x−5)2x(x−5)=x−5x
c) Để phân thức có giá trị nguyên thì x−5xx−5x phải có giá trị nguyên.
=> x=−5x=−5
Bài 3:
a) (x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)(x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)
=(x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5=(x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5
=(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5=(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5
=(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5=(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5
=[(x+1)2+6−(x2+2x−3)]⋅25=[(x+1)2+6−(x2+2x−3)]⋅25
=[(x+1)2+6−x2−2x+3]⋅25=[(x+1)2+6−x2−2x+3]⋅25
=[(x+1)2+9−x2−2x]⋅25=[(x+1)2+9−x2−2x]⋅25
=2(x+1)25+185−25x2−45x=2(x+1)25+185−25x2−45x
=2(x2+2x+1)5+185−25x2−45x=2(x2+2x+1)5+185−25x2−45x
=2x2+4x+25+185−25x2−45x=2x2+4x+25+185−25x2−45x
=2x2+4x+2+185−25x2−45x=2x2+4x+2+185−25x2−45x
=2x2+4x+205−25x2−45x=2x2+4x+205−25x2−45x
c) tự làm, đkxđ: x≠1;x≠−1
a) Phân thức B xác định \(\Leftrightarrow\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne\left\{\pm1\right\}\\x\ne-1\end{cases}\Leftrightarrow}x\ne\left\{\pm1\right\}}\)
b) \(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\cdot\frac{4x^2-4}{5}\)
\(B=\left[\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{3\cdot2}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{\left(2x\right)^2-2^2}{5}\)
\(B=\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(2x-2\right)\left(2x+2\right)}{5}\)
\(B=\frac{10\cdot2\left(x-1\right)\cdot2\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)\cdot5}\)
\(B=\frac{40\left(x-1\right)\left(x+1\right)}{10\left(x-1\right)\left(x+1\right)}\)
\(B=4\)
Vậy với mọi giá trị của x thì B luôn bằng 4
Vậy giá trị của B không phụ thuộc vào biến ( đpcm )
\(Giải:\)
\(ĐKXĐ:x\ne\pm1\)
\(B=\left[\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right]=\left[\frac{x+1}{2x-2}+\frac{12}{4x^2-4}-\frac{x+3}{2x+2}\right]\)
\(=\left[\frac{x+1}{2x-2}+\frac{12}{\left(2x+2\right)\left(2x-2\right)}-\frac{x+3}{2x+2}\right]\)
\(=\left[\frac{\left(x+1\right)\left(2x+2\right)}{\left(2x+2\right)\left(2x-2\right)}+\frac{12}{\left(2x+2\right)\left(2x-2\right)}-\frac{\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}\right]\)
\(=\frac{2x^2+4x+14-2x^2+2x-6x+6}{\left(2x-2\right)\left(2x+2\right)}\)
\(=\frac{6}{\left(2x-2\right)\left(2x+2\right)}\)
a: DKXĐ: x<>1; x<>-1
b: \(A=\dfrac{x^2+2x+1+6-\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=\dfrac{x^2+2x+7-x^2+x-3x+3}{1}\cdot\dfrac{2}{5}=10\cdot\dfrac{2}{5}=4\)
Bài 1:
a) \(x\ne2\)
Bài 2:
a) \(x\ne0;x\ne5\)
b) \(\dfrac{x^2-10x+25}{x^2-5x}=\dfrac{\left(x-5\right)^2}{x\left(x-5\right)}=\dfrac{x-5}{x}\)
c) Để phân thức có giá trị nguyên thì \(\dfrac{x-5}{x}\) phải có giá trị nguyên.
=> \(x=-5\)
Bài 3:
a) \(\left(\dfrac{x+1}{2x-2}+\dfrac{3}{x^2-1}-\dfrac{x+3}{2x+2}\right)\cdot\left(\dfrac{4x^2-4}{5}\right)\)
\(=\left(\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right)\cdot\dfrac{2\left(2x^2-2\right)}{5}\)
\(=\dfrac{\left(x+1\right)^2+6-\left(x-1\right)\left(x+3\right)}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{2\cdot2\left(x^2-1\right)}{5}\)
\(=\dfrac{\left(x+1\right)^2+6-\left(x^2+3x-x-3\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{2\left(x-1\right)\left(x+1\right)}{5}\)
\(=\left[\left(x+1\right)^2+6-\left(x^2+2x-3\right)\right]\cdot\dfrac{2}{5}\)
\(=\left[\left(x+1\right)^2+6-x^2-2x+3\right]\cdot\dfrac{2}{5}\)
\(=\left[\left(x+1\right)^2+9-x^2-2x\right]\cdot\dfrac{2}{5}\)
\(=\dfrac{2\left(x+1\right)^2}{5}+\dfrac{18}{5}-\dfrac{2}{5}x^2-\dfrac{4}{5}x\)
\(=\dfrac{2\left(x^2+2x+1\right)}{5}+\dfrac{18}{5}-\dfrac{2}{5}x^2-\dfrac{4}{5}x\)
\(=\dfrac{2x^2+4x+2}{5}+\dfrac{18}{5}-\dfrac{2}{5}x^2-\dfrac{4}{5}x\)
\(=\dfrac{2x^2+4x+2+18}{5}-\dfrac{2}{5}x^2-\dfrac{4}{5}x\)
\(=\dfrac{2x^2+4x+20}{5}-\dfrac{2}{5}x^2-\dfrac{4}{5}x\)
c) tự làm, đkxđ: \(x\ne1;x\ne-1\)
ô hô ngộ quá nhìu người bt toán lớp 8 trong khi lớp 7 với lại óc nguyow trở lại r kaka
a)
\(\left\{{}\begin{matrix}x-1\ne0\\x+2\ne0\end{matrix}\right.\)
b)
x khác 1
c)
x khác 0; x khác 5
d) x khác 5 ; x khác -5
a) ĐKXĐ: \(x\ne0;x\ne6;x\ne-6\)
b) \(A=\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right):\dfrac{2x-6}{x^2+6x}+\dfrac{x}{6-x}\)
\(A=\left[\dfrac{x}{\left(x+6\right)\left(x-6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right]:\dfrac{2\left(x-3\right)}{x\left(x+6\right)}+\dfrac{x}{6-x}\)
\(A=\left[\dfrac{x^2}{x\left(x+6\right)\left(x-6\right)}-\dfrac{\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right]:\dfrac{2\left(x-3\right)}{x\left(x+6\right)}+\dfrac{x}{6-x}\)
\(A=\dfrac{x^2-x^2+12x-36}{x\left(x+6\right)\left(x-6\right)}:\dfrac{2\left(x-3\right)}{x\left(x+6\right)}+\dfrac{x}{6-x}\)
\(A=\dfrac{12x-36}{x\left(x+6\right)\left(x-6\right)}:\dfrac{2\left(x-3\right)}{x\left(x+6\right)}+\dfrac{x}{6-x}\)
\(A=\dfrac{12\left(x-3\right)}{x\left(x+6\right)\left(x-6\right)}:\dfrac{2\left(x-3\right)}{x\left(x+6\right)}-\dfrac{x}{x-6}\)
\(A=\dfrac{12\left(x-3\right)}{x\left(x+6\right)\left(x-6\right)}\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}-\dfrac{x}{x-6}\)
\(A=\dfrac{6}{x-6}-\dfrac{x}{x-6}\)
\(A=\dfrac{6-x}{x-6}\)
\(A=-\dfrac{x-6}{x-6}\)
\(A=-1\)
Vậy giá trị của A không phụ thuộc vào giá trị của biến