Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐKXĐ:x\ne-3;2\)
\(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}-\frac{1}{x-2}=\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x+2\right)}-\frac{1}{x-2}\)
\(=\frac{x^2+4x+4}{\left(x+3\right)\left(x+2\right)}-\frac{5}{\left(x+3\right)\left(x+2\right)}-\frac{x+3}{\left(x+2\right)\left(x+3\right)}\)
\(=\frac{x^2+4x+4-5-x-3}{\left(x+2\right)\left(x+3\right)}=\frac{x^2+3x-4}{\left(x+3\right)\left(x+2\right)}=\frac{\left(x+4\right)\left(x-1\right)}{\left(x+3\right)\left(x+2\right)}\)
\(x^2-9=0\Leftrightarrow x=3\left(vì:x\ne-3\right)\)
\(\Rightarrow P=\frac{7}{15}\)
\(P\inℤ\Leftrightarrow x^2+3x-4⋮x^2+5x+6\Leftrightarrow2x+10⋮x^2+5x+6\Leftrightarrow12⋮x^2+5xx+6\)
\(................\left(dễ\right)\)
P/s: shitbo sai rồi nha bạn!Nếu không tin thì thay x = 3 vào P ban đầu và giá trị P sau khi rút gọn sẽ thấy sự khác biệt =)
ĐK: \(x\ne-3;x\ne2\)
a) \(P=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}-\frac{1}{x-2}\)
\(=\frac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)
\(=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x-4}{x-2}\)
b) \(x^2-9=0\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)
Thay vào điều kiện,tìm loại x = -3 .Tìm được x =3
Ta có: \(P=\frac{x-4}{x-2}=\frac{3-4}{3-2}=-1\)
c)Ta có: \(P=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\)
Để P có giá trị nguyên thì \(\frac{2}{x-2}\) nguyên hay \(x-2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Suy ra \(x=\left\{0;1;3;4\right\}\)
a)
\(\left\{{}\begin{matrix}x-1\ne0\\x+2\ne0\end{matrix}\right.\)
b)
x khác 1
c)
x khác 0; x khác 5
d) x khác 5 ; x khác -5
Câu 1 :
a) Rút gọn P :
\(P=\dfrac{x+1}{3x-x^2}:\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{12x^2}{x^2-9}\right)\)
\(P=\dfrac{x+1}{x\left(3-x\right)}:\left[\dfrac{\left(3+x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{12x^2}{\left(3-x\right)\left(3+x\right)}\right]\)
\(P=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{9+6x+x^2-9+6x-x^2-12x^2}{\left(3-x\right)\left(3+x\right)}\right)\)
\(P=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{12x-12x^2}{\left(3-x\right)\left(x+3\right)}\)
\(P=\dfrac{x+1}{x\left(3-x\right)}.\dfrac{\left(3-x\right)\left(x+3\right)}{12x\left(1-x\right)}\)
\(P=\dfrac{\left(x+1\right)\left(x+3\right)}{12x^2\left(1-x\right)}\)
a)
A = \(\left(\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
=\(\left(\dfrac{3-x}{x+3}.\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}+\dfrac{x}{x+3}\right):\dfrac{3x^3}{x+3}\) (đkxđ: x \(\ne\)\(\pm\)3)
= \(\left(\dfrac{x}{x+3}-1\right).\dfrac{x+3}{3x^2}\)
= \(\dfrac{x-x-3}{x+3}.\dfrac{x+3}{3x^2}\)
= -x2
b) Thay x = \(\dfrac{1}{2}\) vào A, ta có:
A = -\(\left(\dfrac{1}{2}\right)^2\)
= -\(\dfrac{1}{4}\)
c) Để A < 0 thì -x2 < 0
mà -x2 \(\le\) 0 \(\forall\)x
\(\Rightarrow\) Với mọi x (x\(\ne\)0) thì A < 0
1/ Thay x=-4 vao A -> A= \(\frac{-4}{-4+3}\)= 4
2/ B=\(\frac{2}{x-3}\)+\(\frac{x-15}{x^2-9}\)
B= \(\frac{2\left(x+3\right)+x-15}{\left(x-3\right)\left(x+3\right)}\)
B= \(\frac{2x+6+x-15}{\left(x-3\right)\left(x+3\right)}\)= \(\frac{3x-9}{\left(x-3\right)\left(x+3\right)}\)= \(\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)= \(\frac{3}{x+3}\)
c, B>A <=> \(\frac{3}{x+3}\)> \(\frac{x}{x+3}\)
<=> \(\frac{3}{x+3}\)- \(\frac{x}{x+3}\)> 0
<=> \(\frac{3-x}{x+3}\)>0
<=> 3-x <0 / >0 ( Đkxd x khác -3 )
x+3 <0 / >0
..............
...............................
Vậy ...
1) \(A=\frac{x}{x+3}\)( ĐKXĐ : \(x\ne-3\))
Với x = -4 ( tmđk ) thì giá trị của A là
\(A=\frac{-4}{-4+3}=\frac{-4}{-1}=4\)
2) \(B=\frac{2}{x-3}+\frac{x-15}{x^2-9}\)( ĐKXĐ : \(x\ne\pm3\))
\(B=\frac{2}{x-3}+\frac{x-15}{\left(x-3\right)\left(x+3\right)}\)
\(B=\frac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x-15}{\left(x-3\right)\left(x+3\right)}\)
\(B=\frac{2x+6+x-15}{\left(x-3\right)\left(x+3\right)}\)
\(B=\frac{3x-9}{\left(x-3\right)\left(x+3\right)}\)
\(B=\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{3}{x+3}\)
3) Để B > A
=> \(\frac{3}{x+3}>\frac{x}{x+3}\)( ĐKXĐ : \(x\ne-3\))
<=> \(\frac{3}{x+3}-\frac{x}{x+3}>0\)
<=> \(\frac{3-x}{x+3}>0\)
Xét hai trường hợp :
1.\(\hept{\begin{cases}3-x>0\\x+3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}-x>-3\\x>-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 3\\x>-3\end{cases}}\Leftrightarrow-3< x< 3\)( tmđk )
2. \(\hept{\begin{cases}3-x< 0\\x+3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-x< -3\\x< -3\end{cases}}\Leftrightarrow\hept{\begin{cases}x>3\\x< -3\end{cases}}\)( loại )
Vì x nguyên => x ∈ { -2 ; -1 ; 0 ; 1 ; 2 ; 3 }
Vậy ...
a) P xác định \(\Leftrightarrow\hept{\begin{cases}2x+10\ne0\\x\ne0\\2x\left(x+5\right)\ne0\end{cases}\Leftrightarrow x\ne\left\{-5;0\right\}}\)
b) \(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
\(P=\frac{x^2\left(x+2\right)}{2x\left(x+5\right)}+\frac{2\left(x-5\right)\left(x+5\right)}{2x\left(x+5\right)}+\frac{5\left(10-x\right)}{2x\left(x+5\right)}\)
\(P=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
\(P=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
\(P=\frac{x^3+5x^2-x^2-5x}{2x\left(x+5\right)}\)
\(P=\frac{x^2\left(x+5\right)-x\left(x+5\right)}{2x\left(x+5\right)}\)
\(P=\frac{\left(x+5\right)\left(x^2-x\right)}{2x\left(x+5\right)}\)
\(P=\frac{x\left(x-1\right)}{2x}\)
\(P=\frac{x-1}{2}\)
c) Để P = 0 thì \(x-1=0\Leftrightarrow x=1\)( thỏa mãn ĐKXĐ )
Để P = 1/4 thì \(\frac{x-1}{2}=\frac{1}{4}\)
\(\Leftrightarrow4\left(x-1\right)=2\)
\(\Leftrightarrow4x-4=2\)
\(\Leftrightarrow4x=6\)
\(\Leftrightarrow x=\frac{3}{2}\)( thỏa mãn ĐKXĐ )
d) Để P > 0 thì \(\frac{x-1}{2}>0\)
Mà 2 > 0, do đó để P > 0 thì \(x-1>0\Leftrightarrow x>1\)
Để P < 0 thì \(\frac{x-1}{2}< 0\)
Mà 2 > 0, do đó để P < 0 thì \(x-1< 0\Leftrightarrow x< 1\)
a)
2x-3=0 => x=3/2
b)
2x^2 +1 =0 => vô nghiệm
c) x^2 -25 =0 => x=5 loiaj
x=-5 nhân
d)
x^2 -25 =0 => x=5 loại
x=-5 loại
1)
a) \(5x\left(x^2-3x+\dfrac{1}{5}\right)\)
\(=5x^3-15x^2+x\)
b) \(\left(x-3\right)\left(2x-1\right)\)
\(=2x^2-x-6x+3\)
\(=2x^2-7x+3\)
2)
a) \(3x^2-15xy\)
\(=3x\left(x-5y\right)\)
b) \(x^2-6x-y^2+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2\)
\(=\left(x-3-y\right)\left(x-3+y\right)\)
c) \(x^2+3x+2\)
\(=\left(x^2+x\right)+\left(2x+2\right)\)
\(=x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(x+2\right)\)
bài 4
vì x2+1 >0 với mọi x , do đó GT của Q luôn xác định với mọi x
Q=\(\dfrac{2x^2-4x+5}{x^2+1}=\dfrac{\left(3x^2+3\right)+\left(2x^2-4x+2\right)}{x^2+1}\)=\(\dfrac{3\left(x^2+1\right)+2\left(x-1\right)^2}{x^2+1}=\dfrac{3\left(x^2+1\right)}{x^2+1}+\dfrac{2\left(x-1\right)^2}{x^2+1}\)=\(3+\dfrac{2\left(x-1\right)^2}{x^2+1}\)
Do (x-1)2 ≥ 0
=>2(x-1)2 ≥ 0
x2+1 ≥ 0
=>\(\dfrac{2\left(x-1\right)^2}{x^2+1}\ge0\)
=>\(3+\dfrac{2\left(x-1\right)^2}{x^2+1}\ge3\)
=> Q ≥ 3
=>GTNN của Q =3 khi
x-1=0
=>x=1
Vậy GTNN của Q =3 khi x=1
\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{x^3+1}\)
\(A=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{3-3x}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(A=\frac{x^3-x^2+x-3-3x+x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(A=\frac{1}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{1}{x^3+1}\)
a) \(A=\dfrac{x^2+3x}{x^2-25}+\dfrac{1}{x+5};B=\dfrac{x-5}{x+2}\left(x\ne\pm5;-2\right)\)
Khi \(x=9\) thì :
\(B=\dfrac{9-5}{9+2}=\dfrac{4}{11}\)
b) \(P=A.B\)
\(\Leftrightarrow P=\left[\dfrac{x^2+3x}{x^2-25}+\dfrac{1}{x+5}\right].\dfrac{x-5}{x+2}\)
\(\Leftrightarrow P=\left[\dfrac{x^2+3x}{\left(x+5\right)\left(x-5\right)}+\dfrac{x-5}{\left(x+5\right)\left(x-5\right)}\right].\dfrac{x-5}{x+2}\)
\(\Leftrightarrow P=\left[\dfrac{x^2+4x-5}{\left(x+5\right)\left(x-5\right)}\right].\dfrac{x-5}{x+2}\)
\(\Leftrightarrow P=\left[\dfrac{x^2+5x-x-5}{x+5}\right].\dfrac{1}{x+2}\)
\(\Leftrightarrow P=\left[\dfrac{x\left(x+5\right)-\left(x+5\right)}{x+5}\right].\dfrac{1}{x+2}\)
\(\Leftrightarrow P=\left[\dfrac{\left(x+5\right)\left(x-1\right)}{x+5}\right].\dfrac{1}{x+2}\)
\(\Leftrightarrow P=\dfrac{x-1}{x+2}\)
c) Theo đề bài để
\(P=\dfrac{x-1}{x+2}>\dfrac{1}{3}\left(x>-2\right)\)
\(\Leftrightarrow3\left(x-1\right)>x+2\)
\(\Leftrightarrow3x-3>x+2\)
\(\Leftrightarrow2x>5\)
\(\Leftrightarrow x>\dfrac{5}{2}\left(thỏa,đk:x>-2\right)\)
a) Để tính giá trị của B khi x = 9, ta thay x = 9 vào biểu thức B: B = (x - 5)/(x + 2) - 5/(x + 2) = (9 - 5)/(9 + 2) - 5/(9 + 2) = 4/11 - 5/11 = -1/11
Vậy giá trị của B khi x = 9 là -1/11.
b) Để rút gọn biểu thức P = A.B, ta nhân các thành phần tương ứng của A và B: P = (x^2 + 3x)/(x^2 - 25 + 1) * (x - 5)/(x + 2) = (x(x + 3))/(x^2 - 24) * (x - 5)/(x + 2) = (x(x + 3)(x - 5))/(x^2 - 24)(x + 2)
Vậy biểu thức P được rút gọn thành P = (x(x + 3)(x - 5))/(x^2 - 24)(x + 2).
c) Để tìm giá trị của x khi P > 13 với x > -2, ta giải phương trình: (x(x + 3)(x - 5))/(x^2 - 24)(x + 2) > 13