Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để A là một phân số
=> 2n-4 khác 0
=>2n khác 4
=> n khác 2
Vậy n khác 2 và n thuộc n thì A là một phân số .
b) Để A là số nguyên
=>2n+2 chia hết cho 2n-4
=>2n-4+6 chia hết cho 2n-4
Vì 2n-4 chia hết cho 2n-4
=> 6 chia hết cho 2n-4
=> 2n-4 thuộc Ư(6)
=> 2n-4 thuộc tập hợp 1;2;3;6;-1;-2;-3;-6
=>2n thuộc tập hợp 5;6;7;10;3;2;1;-2
=> n thuộc tập hợp 5/2;3;7/2;5;3/2;1;-1
Vì n thuộc N => n thuộc tập hợp 3;5;1
Sau đó bạn thử lại với từng trường hợp của n rồi kết luận là n thuộc tập hợp 3;5;1
Bạn bạn ơi hãy tk cho mik nha ! Mik đang âm điểm nek .
CHÚC CÁC BẠN HỌC THẬT TỐT ^.^
a)Để A là phân số.
=>2n-4 khác 0
=>2n khác 4
=>n khác 2
Vậy n khác 2 thì A là phân số.
b)Để A là số nguyên.
=>2n+2 chia hết cho 2n-4
=>2n-4+4+2 chia hết cho 2n-4
=>(2n-4)+6 chia hết cho 2n-4
=>6 chia hết cho 2n-4
=>2n-4=Ư(6)=(-1,-2,-3,-6,1,2,3,6)
Vì 2n-4=2.(x-2) là số chẵn.
=>2n-4=(-2,-6,2,6)
=>2n=(2,-2,6,10)
=>n=(1,-1,3,5)
Vậy n=1,-1,3,5 thì A là số nguyên.
a) A là phân số khi và chỉ khi mẫu 2n - 1 khác 0
Nhưng do n thuộc Z nên 2n - 1 luôn khác 0 với mọi n
Vậy A luôn là phân số với n thuộc Z
b) \(\text{A}=\frac{\left(2n-1+3\right)}{2n-1}=\frac{\left(2n-1\right)}{\left(2n-1\right)}+\frac{3}{\left(2n-1\right)}=1+\frac{3}{\left(2n-1\right)}\)
Do \(1\in Z\)nên \(A\in Z\)thì \(\frac{3}{\left(2n-1\right)}\in Z\text{ hay}3⋮2n-1\)
=> 2n - 1 là Ư(3)
\(\Rightarrow2n-1=\pm1;\pm3\)
\(\Rightarrow2n=0;\pm2;4\)
\(\Rightarrow n=0;\pm1;2\)
\(\Rightarrow n=0;\pm1;2\)thì A là số nguyên
a, Để A là phân số thì
\(\Leftrightarrow2n-4\ne0\)
\(\Rightarrow n\ne2\)thì A là phân số
Vậy n\(\ne2\)thì A là phân số
b, Để A nhân giá trị nguyên thì
\(\Leftrightarrow2n+2⋮2n-4\)
\(\Rightarrow2\left(n-2\right)+6⋮2n-4\)
\(\Rightarrow6⋮2n-4\)vì \(2\left(n-2\right)⋮n-4\)
\(\Rightarrow2n-4\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Vì 2n-4 là số chẵn nên loại trường hợp số lẻ
\(\Rightarrow2n-4=\left\{\pm2;\pm6\right\}\)
Ta có bảng giá trị
2n-4 | -2 | 2 | -6 | 6 |
2n | 2 | 6 | -2 | 10 |
n | 1 | 3 | -1 | 5 |
Vậy n={1;3;-1;5}
b, Để a nguyên hay \(2n+2⋮2n-4\Leftrightarrow2n-4+6⋮2n-4\)
\(\Rightarrow2n-4\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
2n - 4 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
2n | 5 | 3 | 6 | 2 | 7 | 1 | 10 | -2 |
n | 5/2 ( ktm ) | 3/2 ( ktm ) | 3 | 1 | 7/2 ( ktm ) | 1/2 ( ktm ) | 5 | -1 |
Giải:
a) Để A=2n+2/2n-4 là phân số thì n ∉ {-1;1;2;3;5}
b) Để A là số nguyên thì 2n+2 ⋮ 2n-4
2n+2 ⋮ 2n-4
=>(2n-4)+6 ⋮ 2n-4
=>6 ⋮ 2n-4
=>2n-4 ∈ Ư(6)={-1;1;2;-2;3;-3;6;-6}
Vì 2n-4 là số chẵn nên 2n-4 ∈ {2;-2;6;-6}
Ta có bảng giá trị:
+)2n-4=2
n=3
+)2n-4=-2
n=1
+)2n-4=6
n=5
+)2n-4=-6
n=-1
Vậy n ∈ {-1;1;3;5}
Chúc bạn học tốt!
Ta có :
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
a. Để A nguyên thì \(\frac{13}{2n+3}\in Z\)
\(\Rightarrow2n+3\in\left\{-13;-1;1;13\right\}\)
\(\Rightarrow2n\in\left\{-16;-4;-2;10\right\}\)
\(\Rightarrow n\in\left\{-8;-2;-1;5\right\}\)
b. Bổ sung điều kiện : A thuộc Z
Để \(A_{max}\) thì \(\frac{13}{2n+3}_{min}\)
\(\Leftrightarrow2n+3_{max}\in Z^-\)
Mà \(A\in Z\Leftrightarrow2n+3=-13\) hoặc \(2n+3=-1\)
\(\Rightarrow A_{max}=3-\frac{13}{-1}=16\Leftrightarrow n=-2\left(tm:n\in Z\right)\)
Vậy Amax = 16 <=> n = -2
a) Ta có: \(A=\frac{2n+1}{2n-1}=\frac{2n-1+2}{2n-1}=\frac{2n-1}{2n-1}+\frac{2}{2n-1}=1+\frac{2}{2n-1}\)
Để A là một phân số \(\Leftrightarrow2n-1\ne0\Leftrightarrow x\ne\frac{1}{2}\)
b) Để A nhận giá trị nguyên \(\Leftrightarrow2⋮\left(2n-1\right)\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Nếu 2n - 1 = 1 => n = 1
Nếu 2n - 1 = -1 => n = 0
Nếu 2n - 1= 2 => n = 3/2
Nếu 2n - 1 = -2 => n = -1/2
Vì \(n\in Z\Rightarrow n=\left\{0;1\right\}\) thì A đạt giá trị nguyên
\(\text{a) }ĐKXĐ:2n-1\ne0\Leftrightarrow n\ne\frac{1}{2}\)
Phản chứng:
\(A=\frac{2n+1}{2n-1}=1+\frac{2}{2n-1}\)(Vậy chúng ta phải chứng minh A là số nguyên)
Để A thuộc Z => \(\frac{2}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\mp2\right\}\)
+ Với 2n-1 =1 => n=1 => A= 3 ( nên a) ko đúng
b)từ ý a) ta có:
Để A thuộc Z => \(\frac{2}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\mp2\right\}\)
+ Với 2n-1=-2=> n= -1/2( loại)
+Với 2n-1=-1 => n= 0 ( chọn)
+ Với 2n-1=1=> n= 1 ( chọn)
+ Với 2n-1 =2 => n=3/2( loại)
vậy......
\(a)\) Ta có :
\(A=\frac{2n-2}{2n+4}=\frac{2n+4-6}{2n+4}=\frac{2n+4}{2n+4}-\frac{6}{2n+4}=1-\frac{6}{2n+4}\)
Để A là số nguyên thì \(\frac{6}{2n+4}\) phải là số nguyên hay nói cách khác \(6⋮\left(2n+4\right)\)
\(\Rightarrow\)\(\left(2n+4\right)\inƯ\left(6\right)\)
Mà \(Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
Suy ra :
\(2n+4\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(3\) | \(-3\) | \(6\) | \(-6\) |
\(n\) | \(\frac{-3}{2}\) | \(\frac{-5}{2}\) | \(-1\) | \(-3\) | \(\frac{-1}{2}\) | \(\frac{-7}{2}\) | \(1\) | \(-5\) |
Mà \(n\inℤ\) nên \(n\in\left\{-5;-3;-1;1\right\}\)
Vậy \(n\in\left\{-5;-3;-1;1\right\}\)
Chúc bạn học tốt ~
b)Gọi d = ƯCLN(a, a+b) (d thuộc N*)
=> a chia hết cho d; a + b chia hết cho d
=> a chia hết cho d; b chia hết cho d
Mà phân số a/b tối giản => d = 1
=> ƯCLN(a, a+b) = 1
=> phân số a/a+b tối giản
a)
Điều kiện xác định: \(2n\ne4\Rightarrow n\ne2\)
Để A là phân số thì \(2n\in Z\Rightarrow n\in Z\)
Vậy mọi \(n\in Z,n\ne2\) thì A là phân số.
b)
\(A=\dfrac{2n+2}{2n-4}\)
\(A=\dfrac{2n-4+6}{2n-4}\)
\(A=1+\dfrac{6}{2n-4}\)
\(\Rightarrow2n-4\inƯ\left(6\right)\)
\(Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
Ta loại các ước số lẻ.
Vậy \(n\in\left\{1;-1;3;5\right\}\)