Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
TH1: 2x+1>=0 => x >=1/2
=>5x-2-(2x+1)
=5x-2-2x-1
=3x-2
TH2:2x+1<0 => x <1/2
=>5x-2- [-(2x-1)]
=5x-2+2x-1
=7x-3
Vậy A=3x-2 khi x>=1/2
A=7x-3 khi x<1/2
b.TH1:x>=1/2
=>A=3x-2
Ta có :
2=3x-2
3x=4
x=4/3 (chọn vì x >= 1/2)
TH2:x <1/2
=>A= 7x-3
Ta có:
2=7x-3
7x=5
=>x=5/7 (loại vì x <1/2)
Vậy x=4/3 thì A=2
a) A = 5x - 2 - |2x + 1|
A = 5x - 1 - 2x - 1
A = 3x - 3
b) A = 3x - 3 = 2
3x = 2 + 3
3x = 5
x = 5/3
c) 3x > 3
x > 1
a, \(A=x^2\left(2x-1\right)+x\left(x+8\right)=2x^3-x^2+x^2+8x=2x^3+8x\)
Thay x = -2, ta có:
\(2\cdot\left(-2\right)^3+8\cdot\left(-2\right)=-32\)
b, \(A=2x^3+8x=0\\ \Leftrightarrow2x\left(x^2+4\right)=0\\ \Leftrightarrow x=0\)
Vậy A=0 khi x=0
a,A = \(x^2\).( 2\(x\) - 1) + \(x\)(\(x+8\))
A = 2\(x^3\) - \(x^2\) + \(x^2\) + 8\(x\)
A = 2\(x^3\) + 8\(x\)
b, \(x=-2\) ⇒ A = 2.(-2)3 + 8.(-2) = - 32
A = 0 ⇔ 2\(x^3\) + 8\(x\) = 0
2\(x\left(x^2+4\right)\) = 0
vì \(x^2\) + 4 > 0 ∀ \(x\) ⇒ \(x\) =0
Bài 2:
3x + 2(5 - x) = 0
<=> 3x + 10 - 2x = 0
<=> x + 10 = 0
<=> x = 0 - 10
<=> x = -10
=> x = -10
Bài 3:
6(3q + 4q) - 8(5p - q) + (p - q)
= 6.3p + 6.4q - 8.5p - (-8).q + p - q
= 18p + 24q - 40p + 8q + p - q
= (18p - 40p + p) + (24q + 8q - q)
= -21p + 31q
\(Bài.44:\\ a,3x-7=0\\ \Leftrightarrow3x=7\\ \Leftrightarrow x=\dfrac{7}{3}\\ b.2x^2+9=0\\ \Leftrightarrow x^2=-\dfrac{9}{2}\left(vô.lí\right)\\ \Rightarrow Không.có.x.thoả.mãn\)
43:
a: \(A=2x\left(x^2-2x-3\right)-6x^2+5x-1+9x^2+3x+3\)
\(=2x^3-4x^2-6x+3x^2+8x+2\)
\(=2x^3-x^2+2x+2\)
b: \(\dfrac{A}{2x-1}=\dfrac{x^2\left(2x-1\right)+2x-1+3}{2x-1}=x^2+1+\dfrac{3}{2x-1}\)
Thương là x^2+1
Dư là 3
c: A chia hết cho 2x-1
=>3 chia hết cho 2x-1
=>2x-1 thuộc {1;-1;3;-3}
=>x thuộc {1;0;2;-1}
a)*TH1: 2x+1>0 .Suy ra: |2x+1|=2x+1. Suy ra A=5x-2-2x-1=5x-2x-2-1=3x-3
*TH2: 2x+1<0. Suy ra: |2x+1|=-2x-1. Suy ra: A= 5x-2+2x+1=5x+2x-2+1=7x-1
b) Ta có: A>0.Suy ra: 5x-2>|2x+1|. Suy ra: 5x-2>0. Suy ra:5x>2. Suy ra x>2/5.
Vậy, nếu x>2/5 thì A>0.