K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2023

\(A=4+7+10+13+...+2017+2020+2023\)

Số các số hạng của A là:

\((2023-4):3+1=674(số)\)

Tổng A bằng:

\((2023+4)\cdot674:2=683099\)

Vậy \(A=683099\).

22 tháng 10 2023

\(4+7+10+13+16+...+2023\)

Số phần tử trong dãy: \(\dfrac{2023-4}{3}+1=674\)

Tổng của dãy trên: \((2023+4)\cdot674:2=683099\)

1 tháng 8 2023

\(A=1+2+2^2+...+2^{2020}+2^{2021}+2^{2023}\)

\(A=1+2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2020}\left(1+2+2^2\right)-2^{2022}+2^{2023}\)

\(A=1+2.7+2^4.7+...+2^{2020}.7-2^{2022}+2^{2023}\)

\(A=7\left(2+2^4+...+2^{2020}\right)+\left(2^{2022}+1\right)\left(1\right)\)

Ta có :

\(2^3=8\equiv1\) (mod 7)

\(\Rightarrow\left(2^3\right)^{674}\equiv1^{674}=1\) (mod 7)

\(\Rightarrow2^{2022}\equiv1\) (mod 7)

\(\Rightarrow2^{2022}+1\equiv1+1=2\)  (mod 7)

\(\Rightarrow2^{2022}+1\equiv2\) (mod 7)

mà \(7\left(2+2^4+...+2^{2020}\right)⋮7\)

\(\left(1\right)\Rightarrow A=7\left(2+2^4+...+2^{2020}\right)+\left(2^{2022}+1\right)\equiv2\) (mod 7)

Vậy số dư của A khi chia cho 7 là 2

15 tháng 11 2021

1: \(A=6^{2020}\left(1+6\right)+6^{2022}\left(1+6\right)\)

\(=7\left(6^{2020}+6^{2022}\right)⋮7\)

AH
Akai Haruma
Giáo viên
16 tháng 11 2021

Bài 1:

$A=6^{2020}(1+6+6^2+6^3)=6^{2020}.259=6^{2020}.7.37\vdots 7$

Ta có đpcm.

15 tháng 11 2021

1)  A=62020+62021+62022+62023

    A= ( 62020+62021) +  ( 62022+62023)

    A= 62020.( 1+6) + 62022.( 1+6)

    A= 62020.7+62022.7

    A= 7.( 62020+62022)

Vì 7 chia hết cho 7 => 7.(62020+62022) chia hết cho 7 hay A chia hết cho 7.

Vậy A chia hết cho 7

    _HT_

15 tháng 11 2021

2)  1+2+3+...+n=1275

Ta thấy dãy số trên là dãy số cách đều nên có khoảng cách là 1 đơn vị 

=> Dãy số trên có n số hạng

Tổng của dãy số trên là :   (n+1).n:2 = 1275

                                          (n+1).n= 1275.2=2550

Mà n và n+1 là 2 số tự nhiên liên tiếp => (n+1).n = 51.50

=> n=50 ( vì n< n+1)

  Vậy n=50

_HT_

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Lời giải:
$a=1+5+5^2+5^3+...+5^{2022}+5^{2023}$

$5a=5+5^2+5^3+5^4+....+5^{2023}+5^{2024}$

$\Rightarrow 5a-a=5^{2024}-1$

$\Rightarrow 4a=5^{2024}-1$

$\Rightarrow 4a+1=5^{2024}\vdots 5^{2023}$ (đpcm)

27 tháng 4 2019

Đáp án cần chọn là: A

Số các số hạng của tổng đã cho là: 

(2020−4):3+1=673 (số hạng)

Do đó:

S=4+7+10+13+...+2014+2017+2020

=(2020+4).673:2

=2024.673:2

=1362152:2

=681076

5 tháng 9 2021

Số các số hạng của tổng đã cho là: 

(2020−4):3+1=673 (số hạng)

do vậy:

S=4+7+10+13+...+2014+2017+2020

=(2020+4).673:2

=2024.673:2

=1362152:2

=681076  

 Đáp án bạn cần chọn là: A

a: =152,3+7,7+2021,19-2021,19

=160

b: =7/15*3/14*20/13

\(=\dfrac{7}{14}\cdot\dfrac{3}{15}\cdot\dfrac{20}{13}=\dfrac{1}{2}\cdot\dfrac{1}{5}\cdot\dfrac{20}{13}=\dfrac{2}{13}\)

c: \(=\dfrac{7}{4}\left(\dfrac{13}{12}-\dfrac{10}{12}\right)+\dfrac{5}{6}=\dfrac{7}{16}+\dfrac{5}{6}=\dfrac{61}{48}\)

27 tháng 9 2020

nếu bạn cần giúp thì tôi học lớp 2 ông ạ

27 tháng 9 2020

xao day dung tin

7 tháng 5 2017

\(2013^{2013}=\left(2013^{2012}\right).2013=\left(...1\right).2013=\left(...3\right)\)
\(2017^{2017}=\left(2017^{2016}\right).2017=\left(...1\right).2017=\left(...7\right)\)
\(\Rightarrow2013^{2013}+2017^{2017}=\left(...3\right)+\left(...7\right)=\left(...0\right)⋮10\)