K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2018

vì A là tổng của các số dương nên A>0(1)

A=1/2  +  1/2^2  +  1/2^3  +   + 1/2^100 

2A= 1 +  1/2  + 1/2^2 + ......+ 1/2^99

2A-A = 1 - 1/2^99

hay A= 1 - 1/2^99 <1 (2)

từ (1); (2) => 0<A<1 => ĐPCM. chúc hok tốt

18 tháng 4 2018

Thanks ! Nhưng đáp án đúng thì cách trình bày có đúng k? 

28 tháng 4 2015

1.

a.Để A là phân số thì n - 5 khác 0 => n khác 5

b.Để A \(\in\)Z thì 3 chia hết cho n - 5 => n - 5 \(\in\) Ư(3) = {1; 3; -1; -3}

Ta có bảng sau:

n - 51-13-3
n6482

Vậy n \(\in\){6; 4; 8; 2} thì A \(\in\)Z.

 

28 tháng 4 2015

2.

\(A=\frac{1}{21}+\frac{1}{22}+....+\frac{1}{40}>\frac{1}{40}.20=\frac{1}{2}\)

\(A=\frac{1}{21}+\frac{1}{22}+....+\frac{1}{40}

20 tháng 11 2018

\(A=3+3^2+3^3+3^4+...+3^{2015}+3^{2016}\\\)

\(A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2015}\left(1+3\right)\)

\(A=\left(1+3\right).\left(3+3^3+...+3^{2015}\right)\)

\(A=4.\left(3+3^3+...+3^{2015}\right)\)

Suy ra    : \(A⋮4\)

9 tháng 5 2016

Ta có: \(\frac{1}{n^2}<\frac{1}{n\times\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

Từ điều trên, ta có:  \(A<\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2016}-\frac{1}{2017}\)

\(A<\frac{1}{2}-\frac{1}{2017}\)

\(A<\frac{2015}{4034}<1\)

0<A<1 nên A không phải là số tự nhiên.

9 tháng 5 2016

(+)Hiển nhiên A>0 vì các số hạng của A đều > 0 (1)

(+)Tổng quát: \(\frac{1}{n^2}<\frac{1}{\left(n-1\right).n}\)

Ta có:\(A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2015.2016}\)

\(\Rightarrow A<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}=1-\frac{1}{2016}<1\)  (2)

Từ (1);(2)

=>0<A<1

=>A ko là số tự nhiên

26 tháng 5 2016

Gọi d là ƯC của 4n + 7 và 6n + 1

Khi đó : 4n + 7 chia hết cho d và 6n + 1 chia hết cho d

<=>   12n + 21 chia hết cho d và 12n + 2 chia hết cho d

=> (12n + 21) - ( 12n + 2) chia hết cho d = > 19 chia hết cho d

Vì 19 là số nguyên tố => d = 1

Vậy \(\frac{4n+7}{6n+1}\) Là p/s tối giản

26 tháng 5 2016

Nếu n = 3 thì 4n+7/6n+1=1 đâu phải là phân số tối giản

3 tháng 5 2019

a, Gọi d là ƯC(12n + 1; 30n + 2 ), ta có :

12n + 1 chia hết cho d => 5( 12n + 1 ) chia hết cho d

30n + 2 chia hết cho d => 2 ( 30n + 2 ) chia hết cho d

-> 5( 12n + 1 ) - 2( 30n + 2 ) chia hết cho d

=> 1 chia hết cho d

vậy d = 1 nên 12n + 1 và 30n + 2 nguyên tố cùng nhau

=> \(\frac{12n+1}{30n+2}\)là phân số tối giản

3 tháng 5 2019

b, ta có : \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)

.....

\(\frac{1}{100^2}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1-\frac{1}{100}=\frac{99}{100}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

6 tháng 4 2017

1,\(\frac{3x}{9}=\frac{2}{6}\Rightarrow\frac{3x}{9}=\frac{3}{9}\Rightarrow x=1.\)

6 tháng 4 2017

bn định cho nguyên cái đề học sinh giỏi ra à

1 bài văn dã man

hết ns đc luôn