Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Vì x và y là 2 ĐLTLT nên ta có:
\(\frac{x}{y}=\frac{x_1}{y_1}=\frac{x_2}{y_2}\)
\(=\frac{x_1}{-\frac{3}{4}}=\frac{2}{\frac{1}{7}}=14\)
\(\Rightarrow x_1=14.-\frac{3}{4}=-\frac{21}{2}\)
b. Ta có: \(\frac{x_1}{y_1}=\frac{x_2}{y_2}\)
\(\Rightarrow\frac{x_1}{x_2}=\frac{y_1}{y_2}=\frac{x_1}{-4}=\frac{y_1}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x_1}{-4}=\frac{y_1}{3}=\frac{y_1-x_1}{3-\left(-4\right)}=\frac{-2}{7}\)
\(\Rightarrow\hept{\begin{cases}x_1=-\frac{2}{7}.\left(-4\right)=\frac{8}{7}\\y_1=-\frac{2}{7}.3=-\frac{6}{7}\end{cases}}\)
a: Vì x,y là hai đại lượng tỉ lệ thuận nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
\(\Leftrightarrow x_1=\dfrac{y_1}{y_2}\cdot x_2=\dfrac{-3}{5}:\dfrac{1}{9}\cdot3=-\dfrac{81}{5}\)
b: Ta có: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\Leftrightarrow\dfrac{x_2}{5}=\dfrac{y_2}{-2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_2}{5}=\dfrac{y_2}{-2}=\dfrac{y_2-x_2}{-2-5}=\dfrac{-7}{-7}=1\)
Do đó: \(x_2=5;y_2=-2\)
tương tự Câu hỏi của Trần Thảo Mai Thương - Toán lớp 7 | Học trực tuyến
Giải:
Vì x; y là 2 đại lượng tỉ lệ thuận nên:
\(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}_{\left(1\right)}.\)
Thay \(y_2=\dfrac{1}{7};y_1=\dfrac{3}{4};x_2=2\) vào \(_{\left(1\right)}\):
\(\dfrac{x_1}{2}=\dfrac{\dfrac{3}{4}}{\dfrac{1}{7}}\Rightarrow x_1=\dfrac{2.\dfrac{3}{4}}{\dfrac{1}{7}}=\dfrac{\dfrac{3}{2}}{\dfrac{1}{7}}=\dfrac{21}{2}.\)
Vậy \(x_1=\dfrac{21}{2}.\)