Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: x và y là hai đại lượng tỉ lệ thuận
nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
=>\(\dfrac{x_1}{2}=\dfrac{-3}{4}:\dfrac{1}{7}=-\dfrac{3}{4}\cdot7=-\dfrac{21}{4}\)
=>\(x_1=-\dfrac{21}{4}\cdot2=-\dfrac{21}{2}\)
b: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
=>\(\dfrac{x_1}{-4}=\dfrac{y_1}{3}\)
mà \(y_1-x_1=-2\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_1}{-4}=\dfrac{y_1}{3}=\dfrac{y_1-x_1}{3-\left(-4\right)}=-\dfrac{2}{7}\)
=>\(x_1=\dfrac{-2}{7}\cdot\left(-4\right)=\dfrac{8}{7};y_1=\dfrac{-2}{7}\cdot3=-\dfrac{6}{7}\)
a, Theo tính chất của tỉ lệ thuận ta có:
x1y1=x2y2=x1−34=217x1y1=x2y2=x1−34=217
⇒x1=(−34⋅2):17=−32⋅7=−212⇒x1=(−34⋅2):17=−32⋅7=−212
Vậy..............................
b, Theo t/c của tỉ lệ thuận ta có:
x1x2=y1y2x1x2=y1y2 hay x1−4=y13x1−4=y13
Áp dụng t/c của dãy tỉ số = nhau ta có:
x1−4=y13=y1−x13−(−4)=−27x1−4=y13=y1−x13−(−4)=−27
⇒⎧⎩⎨⎪⎪⎪⎪x1=−27⋅(−4)=87y1=−27⋅3=−67⇒{x1=−27⋅(−4)=87y1=−27⋅3=−67
Vậy.............
a, Theo tính chất của tỉ lệ thuận ta có:
x1y1=x2y2=x1−34=217x1y1=x2y2=x1−34=217
⇒x1=(−34⋅2):17=−32⋅7=−212⇒x1=(−34⋅2):17=−32⋅7=−212
Vậy..............................
b, Theo t/c của tỉ lệ thuận ta có:
x1x2=y1y2x1x2=y1y2 hay x1−4=y13x1−4=y13
Áp dụng t/c của dãy tỉ số = nhau ta có:
x1−4=y13=y1−x13−(−4)=−27x1−4=y13=y1−x13−(−4)=−27
⇒⎧⎩⎨⎪⎪⎪⎪x1=−27⋅(−4)=87y1=−27⋅3=−67
~Hok tốt
Câu a có cách 2 :
a) X và y là hai đại lượng tỉ lệ thuận nên ta có công thức:
X1/x2=y1/y2 do đó:
X1.y2=x2.y1
=>x1.(-2)=5.(-3)
=>x1.(-2)=-15
=>x1=-15:(-2)
=>x1=7,5
Vậy x1=7,5
a, Theo tính chất của tỉ lệ thuận ta có:
x1y1=x2y2=x1−34=217x1y1=x2y2=x1−34=217
⇒x1=(−34⋅2):17=−32⋅7=−212⇒x1=(−34⋅2):17=−32⋅7=−212
Vậy..............................
b, Theo t/c của tỉ lệ thuận ta có:
x1x2=y1y2x1x2=y1y2 hay x1−4=y13x1−4=y13
Áp dụng t/c của dãy tỉ số = nhau ta có:
x1−4=y13=y1−x13−(−4)=−27x1−4=y13=y1−x13−(−4)=−27
⇒⎧⎩⎨⎪⎪⎪⎪x1=−27⋅(−4)=87y1=−27⋅3=−67⇒{x1=−27⋅(−4)=87y1=−27⋅3=−67
Vậy.............
a, Theo tính chất của tỉ lệ thuận ta có:
x1y1=x2y2=x1−34=217x1y1=x2y2=x1−34=217
⇒x1=(−34⋅2):17=−32⋅7=−212⇒x1=(−34⋅2):17=−32⋅7=−212
Vậy..............................
b, Theo t/c của tỉ lệ thuận ta có:
x1x2=y1y2x1x2=y1y2 hay x1−4=y13x1−4=y13
Áp dụng t/c của dãy tỉ số = nhau ta có:
x1−4=y13=y1−x13−(−4)=−27x1−4=y13=y1−x13−(−4)=−27
⇒⎧⎩⎨⎪⎪⎪⎪x1=−27⋅(−4)=87y1=−27⋅3=−67⇒{x1=−27⋅(−4)=87y1=−27⋅3=−67
Vậy.............
Lời giải:
Vì $x,y$ là 2 đại lượng tỉ lệ thuận nên đặt $y=ax$.
Ta có:
$y_2=ax_2$
$3=a(-4)\Rightarrow a=\frac{-3}{4}$. Vậy $y=\frac{-3}{4}x$. Thay vào điều kiện $y_1-x_1=7$ ta có:
$\frac{-3}{4}x_1-x_1=7$
$\frac{-7}{4}x_1=7$
$\Rightarrow x_1=-4$
$y_1=7+x_1=7+(-4)=3$
Đáp án C
`x` tỉ lệ thuận với `y => x/y=(x_1)/(y_1)=(x_2)/(y_2)`
`<=> x_1 y_2=x_2 y_1 <=> (y_1)/(y_2) = (x_1)/(x_2)`
Áp dụng tính chất của dãy tỉ số bằng nhau:
` (y_1)/(y_2) = (x_1)/(x_2)=(y_1-x_1)/(y_2-x_2)=(-2)/(-4-3)=2/7`
`=> y_1=-8/7`
`x_1=6/7`
a. Vì x và y là 2 ĐLTLT nên ta có:
\(\frac{x}{y}=\frac{x_1}{y_1}=\frac{x_2}{y_2}\)
\(=\frac{x_1}{-\frac{3}{4}}=\frac{2}{\frac{1}{7}}=14\)
\(\Rightarrow x_1=14.-\frac{3}{4}=-\frac{21}{2}\)
b. Ta có: \(\frac{x_1}{y_1}=\frac{x_2}{y_2}\)
\(\Rightarrow\frac{x_1}{x_2}=\frac{y_1}{y_2}=\frac{x_1}{-4}=\frac{y_1}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x_1}{-4}=\frac{y_1}{3}=\frac{y_1-x_1}{3-\left(-4\right)}=\frac{-2}{7}\)
\(\Rightarrow\hept{\begin{cases}x_1=-\frac{2}{7}.\left(-4\right)=\frac{8}{7}\\y_1=-\frac{2}{7}.3=-\frac{6}{7}\end{cases}}\)