Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-2017}{2018}-\frac{x-2018}{2017}=\frac{2017}{x-2018}-\frac{2018}{x-2017}\)
\(\Leftrightarrow\)\(\frac{2017\left(x-2017\right)-2018\left(x-2018\right)}{2017.2018}=\frac{2017\left(x-2017\right)-2018\left(x-2018\right)}{\left(x-2017\right)\left(x-2018\right)}\)
Do \(2017\left(x-2017\right)-2018\left(x-2018\right)\ne0\) nên \(\left(x-2017\right)\left(x-2018\right)=2017.2018\)
\(\Leftrightarrow\)\(x^2-4035x+2017.2018=2017.2018\)
\(\Leftrightarrow\)\(x\left(x-4035\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\left(l\right)\\x=4035\left(n\right)\end{cases}}\)
Vậy x = 4035
\(A=\left(x+1\right).\left(x+2\right).\left(x+3\right)...\left(x+2016\right)=2016\)
\(A=x\left(1+2+3+...+2016\right)=2016\)
\(A=x\cdot\frac{\left(2016+1\right).2016}{2}=x\cdot2033136=2016\)
\(\Rightarrow x=2016:2033136=\frac{2}{2017}\)
\(\Rightarrow\frac{2}{2017}< \frac{1}{2015}\)
\(\Rightarrow x< \frac{1}{2015}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x.\left(x+2\right)}=\frac{20}{41}\)
\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{20}{41}\div\frac{1}{2}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{40}{41}\)
\(\Leftrightarrow\frac{1}{x+2}=1-\frac{40}{41}\)
\(\Leftrightarrow\frac{1}{x+2}=\frac{1}{41}\)
\(\Leftrightarrow x+2=41\)
\(\Leftrightarrow x=41-2\)
\(\Leftrightarrow x=39\)
\(b)\) \(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{97.101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(1-\frac{1}{101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(\frac{100}{101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(100=2x+4\)
\(\Leftrightarrow\)\(2x=96\)
\(\Leftrightarrow\)\(48\)
Vậy \(x=48\)
Chúc bạn học tốt ~
\(a)\) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{47.49}=\frac{24}{x+1}\)
\(\Leftrightarrow\)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{47.49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{47}-\frac{1}{49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(1-\frac{1}{49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(\frac{48}{49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(49=x+1\)
\(\Leftrightarrow\)\(x=48\)
Vậy \(x=48\)
Chúc bạn học tốt ~
\(a)\) Ta có :
\(VP=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)
\(VP=\left(\frac{2018}{1}-1-...-1\right)+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{2}{2017}+1\right)+\left(\frac{1}{2018}+1\right)\)
\(VP=1+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2017}+\frac{2019}{2018}\)
\(VP=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)
Lại có :
\(VT=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x\)
\(\Rightarrow\)\(x=2019\)
Vậy \(x=2019\)
Chúc bạn học tốt ~
P \(=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\)
P\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{50^2-1}{50^2}\)
P \(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{49.51}{50.50}\)
P\(=\frac{\left(1.2.3...49\right).\left(3.4.5...51\right)}{\left(2.3.4...50\right).\left(2.3.4...50\right)}\)
P\(=\frac{1.51}{50.2}=\frac{51}{100}\)
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\cdot\cdot\cdot\left(x+2017\right)=2017\) \(\left(\text{Có }\left(2017-1\right)\text{ : }1+1+1=2018\right)\)
\(\text{Vì }\text{tích trên là tích của 2018 số hạng mà có kết quả = 2017 là số nguyên}>0\text{ }\Rightarrow\text{ }x>0\left(x\in Z\right)\)
\(\text{Mà }\frac{1}{2016!}< 1\)
\(\text{Và số nguyên bé nhất lớn hơn 0 là 1 }\)
\(\Rightarrow\text{ }x>\frac{1}{2016!}\)
\(\text{Mình nghĩ chắc là sai rồi ! Mình cũng đang bận !}\)