Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Vì \(\hept{\begin{cases}\left|x+19\right|\ge0;\forall x,y\\\left|y-5\right|\ge0;\forall x,y\end{cases}\Rightarrow\left|x+19\right|+\left|y-5\right|\ge0;\forall x,y}\)
\(\Rightarrow\left|x+19\right|+\left|y-5\right|+1890\ge1890;\forall x,y\)
Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x+19\right|=0\\\left|y-5\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}}\)
Vậy Min A=1890 \(\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}\)
b)Vì \(\hept{\begin{cases}-\left|x-7\right|\le0;\forall x,y\\-\left|y+13\right|\le0;\forall x,y\end{cases}}\)\(\Rightarrow-\left|x-7\right|-\left|y+13\right|\le0;\forall x,y\)
\(\Rightarrow-\left|x-7\right|-\left|y+13\right|+1945\le1945;\forall x,y\)
Dấu"="Xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+13\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)
Vậy Max \(B=1945\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)
bài 3:
a, đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)
=>x=12k,y=9k,z=5k
ta có: ayz=20=> 12k.9k.5k=20
=> (12.9.5)k^3=20
=>540.k^3=20
=>k^3=20/540=1/27
=>k=1/3
=>x=12.1/3=4
y=9.1/3=3
z=5.1/3=5/3
vậy x=4,y=3,z=5/3
b,ta có: \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)
A/D tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2-z^2}{25+49-9}=\dfrac{585}{65}=9\)
=>x=5.9=45
y=7.9=63
z=3*9=27
vậy x=45,y=63,z=27
Ta co:\(\frac{x}{x+y}\)<1\(\Rightarrow\)\(\frac{x}{x+y}\)<\(\frac{x+y}{x+y+z}\)(1)
\(\frac{y}{y+z}\)<1\(\Rightarrow\)\(\frac{y}{y+z}\)<\(\frac{y+x}{y+z+x}\)(2)
\(\frac{z}{z+x}\)<1\(\Rightarrow\)\(\frac{z}{z+x}\)<\(\frac{z+y}{z+x+y}\)(3)
Tu(1)(2)(3)\(\Rightarrow\)\(\frac{x}{x+y}\)+\(\frac{y}{y+z}\)+\(\frac{z}{z+x}\)< \(\frac{x+z}{x+y+z}\)+ \(\frac{y+x}{y+z+x}\) + \(\frac{z+y}{z+x+y}\)
\(\Rightarrow\)A <\(\frac{2x+2y+2z}{x+y+z}\)
\(\Rightarrow\)A < \(\frac{2\left(x+y+z\right)}{x+y+z}\)
\(\Rightarrow\)A< 2
Bạn định kiểm tra chỉ số thông minh IQ người khác hà mà sao biết bài toán rồi vẫn hỏi?
a, x/4 = y/7
=> (x-y)/(4-7) = x/4 = y/7 có x - y = 9
=> 9/-3 = x/4 = y/7
=> x = -3.4 = -12 và y = -3.7 = -21
b, x/2 = y/5
=> 3x/6 = y/5
=> (3x-y)(6 - 5) = x/6 = y/5 mà 3x - y = 5
=> 5 = x/6 = y/5
=> x = 5.6 = 30 và y = 5.5 = 25
a) \(\frac{x}{4}=\frac{y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{4}=\frac{y}{7}=\frac{x-y}{4-7}=\frac{9}{-3}=-3\)
\(\Rightarrow\hept{\begin{cases}x=-3\cdot2=-6\\y=-3\cdot7=-21\end{cases}}\)
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}=\dfrac{x-3y+4z}{4-3.3+4.9}=\dfrac{63}{31}=2\)
\(\Rightarrow x=8\)
\(\Rightarrow y=6\)
\(\Rightarrow z=18\)
b. c. Xem lại đề.
B = ( x - 3 )2 + 2
Ta có: ( x - 3 )2 \(\ge0\) với mọi x
=> \(\left(x-3\right)^2+2\ge0+2=2\)với mọi x
=> \(B\ge2\) với mọi x
Dấu "=" xảy ra <=> x - 3 = 0 <=> x = 3
Vậy gtnn của B = 2 đạt tại x = 3
C = |2 x - 18 | + |y + 3 | + 2
Có: | 2x -18| \(\ge0\); | y + 3 | \(\ge0\)=>| 2x - 18| + | y+3| \(\ge0\)
=> | 2x -18| + | y+3| + 2 \(\ge2\)
Dấu "=" xảy ra <=> 2x -18 = 0 và y + 3 = 0 <=> x = 9 và y = - 3
Vậy gtnn của B = 2 đạt tại x = 9 và y = -3.
B=(x−3)2+2 \(\ge\)2\(\forall\)x
Dấu "=" xảy ra khi x−3=0⇒x=3
Vậy GTNN của B=2 khi x=3
C=|2x−18|+|y+3|+2 \(\ge\) 2\(\forall\)x,y
Dấu "=" xảy ra khi\(\hept{\begin{cases}2x-18=0\\x+3=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=9\\y=-3\end{cases}}\)
Vậy GTNN của C=2khi\(\hept{\begin{cases}x=9\\x=-3\end{cases}}\)
#Châu's ngốc
a) Ta có: \(22x-y=21x+x-y\)
Ta có: \(21x⋮7\)
\(x-y⋮7\)
Do đó: \(21x+x-y⋮7\)(dấu hiệu chia hết của một tổng)
hay \(22x-y⋮7\)(đpcm)
b) Ta có: \(8x+20y=7x+21y+x-y\)
Ta có: \(7x+21y⋮7\)
\(x-y⋮7\)
Do đó: \(7x+21y+x-y⋮7\)(dấu hiệu chia hết của một tổng)
hay \(8x+20y⋮7\)(đpcm)
c) Ta có: \(11x+10y=21x-10x+10y\)
\(=21x-\left(10x-10y\right)\)
Ta có: \(21x⋮7\)
\(10x-10y=10\left(x-y\right)⋮7\)
Do đó: \(21x-\left(10x-10y\right)⋮7\)(dấu hiệu chia hết của một hiệu)
hay \(11x+10y⋮7\)(đpcm)
a) Ta có: 22x - y = 21x + (x - y)
Vì 21 ⋮ 7
Nên 21x ⋮ 7
Mà x - y ⋮ 7
Do đó biểu thức trên ⋮ 7
b) Ta có 8x + 20 = 8x - 8y + 28y = 8(x - y) + 28y
Xét thấy 28 ⋮ 7
Nên 28y ⋮ 7
Và 8(x - y) ⋮ 7
Nên biểu thức trên chia hết cho 7
c)Ta có 11x + 10y = 11x - 11y + 21y = 11(x - y) + 21y
Xét thấy 21 ⋮ 7
Nên 21y ⋮ 7
Và 11(x - y) ⋮ 7
Vậy biểu thức trên chia hết cho 7