K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2021

Gọi 2 số nguyên đó là a ; b

Xét hiệu a3 + b3 - (a + b) 

= a3 - a + (b3 - b)

= a(a2 - 1) + b(b2 - 1)

= (a - 1)a(a + 1) + (b - 1)b(b + 1) \(⋮\)6 ( tổng 2 tích 3 số nguyên liên tiếp)

=> Tổng của hai số tự nhiên bất kì chia hết cho 6 khi và chỉ khi tổng các lập phương của chúng chia hết cho 6 (Đpcm)

  

10 tháng 2 2021

Gọi hai số tự nhiên đó là a và b     (a,b \(\in\)N) thì :

a\(\equiv\)a (mod 6)

b3 \(\equiv\)b (mod 6)

\(\Rightarrow\)a + b \(⋮\)\(\Leftrightarrow\)a3 + b3 \(⋮\)6 (đpcm)

13 tháng 3 2021

Xét \(a^3+b^3-\left(a+b\right)=a^3-a+b^3-b=a\left(a^2-1\right)+b\left(b^2-1\right)=\)

\(=\left(a-1\right)a\left(a+1\right)+\left(b-1\right)b\left(b+1\right)\)

(a-1)a(a+1) và (b-1)b(b+1) là tích 3 số tự nhiên liên tiếp mà tích của 3 số tự nhiên liên tiếp thì chia hết cho 6

CM:

+ 3 số tự nhiên liên tiếp có ít nhất 1 số chẵn nên tích của chúng chia hết cho 2

+ Nếu \(a⋮3\Rightarrow\left(a-1\right)a\left(a+1\right)⋮3\)

+ Nếu a chia 3 dư 1\(\Rightarrow\left(a-1\right)⋮3\Rightarrow\left(a-1\right)a\left(a+1\right)⋮3\)

+ Nếu a chia 3 dư 2\(\Rightarrow\left(a+1\right)⋮3\Rightarrow\left(a-1\right)a\left(a+1\right)⋮3\)

=> (a-1)a(a+1) đồng thời chia hết cho 2 và 3 nên nó chia hết cho 2.3=6 với mọi a

Từ kết quả chứng minh trên

\(\Rightarrow\left(a-1\right)a\left(a+1\right)⋮6\) và \(\left(b-1\right)b\left(b+1\right)⋮6\) \(\Rightarrow\left(a-1\right)a\left(a+1\right)+\left(b-1\right)b\left(b+1\right)⋮6\)

\(\Rightarrow a^3+b^3-\left(a+b\right)⋮6\)

Mà \(a^3+b^3⋮6\Rightarrow\left(a+b\right)⋮6\)

20 tháng 3 2019

Tội nghiệp thanh niên , 3 năm r mà dell cs ma nào trả lời 

Trả lời 

dễ mà gọi 2 số đó là x;y(x;yZ)

ta có \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

Vì \(x+y⋮3\)

\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)⋮3\)

\(\Rightarrow x^3+y^3⋮3\)( đpcm )

17 tháng 8 2015

hu hu.. ! lần này mình tự làm nếu còn giống của bạn nào thì đừng bảo mình coppy nhé ! cai nay tu minh biet nen minh tu lam day !

Gọi 3 số nguyên liên tiếp lần lượt là (a - 1), a, (a + 1) 
chứng minh: (a - 1)^3 + a^3 + (a + 1)^3 chia hết cho 9 
=>(a - 1)^3 + a^3 + (a + 1)^3=a^3 - 3a^2 + 3a - 1 + a^3 + a^3 + 3a^2 + 3a +1 = 3a^3 + 6a 
= >3a(a^2 + 2) = 3a(a^2 - 1) + 9a 
= >3(a - 1)a(a + 1) + 9a 
ta da biet tíck của 3 sô tự nhiên liên tiếp chia hhết cho 3 nên 3(a - 1)a(a + 1) chia hết cho 9 
Mặt khác 9a chia hết cho 9 nên 
=>3(a - 1)a(a + 1) + 9a 
hay ta dc điều phải chứng minh 

31 tháng 1 2018

gọi ba số tự nhiên đó là a,a+1,a+2

theo bài ta có 

(a+a+1+a+2)3

=(a+a+a+1+2)3

=(a+a+a+3)3

=(a+a+a)3+27

mà (a+a+a)3 chia hết cho 3

nên (a+a+a)3 chia het cho 9

do 27 chia het cho 9

nen (a+a+a)3+27 chia het cho 9

vậy ............................

14 tháng 2 2015

a3+b3=(a+b)(a2-ab+b2)
Mà a+b chia hết cho 3
Nên a3+bchia hết cho 3

18 tháng 10 2019

gọi 2 số đó là x;y(x;y∈∈Z)

ta có x3+y3=(x+y)(x2−xy+y2)x3+y3=(x+y)(x2−xy+y2)

do x+y⋮⋮3 => DPCM

Chúc làm bài tốt

18 tháng 12 2016

Gọi 2 số đó là x;y (x;yZ)

Ta có: x^3+y^3=(x+y)(x^2−xy+y^2)

Do x+y 3 => ..........

25 tháng 5 2017

3 số nguyên liên tiếp có dạng (a-1);a;(a+1).
Tổng lập phương của chúng là:
(a-1)^3 + a^3 + (a+1)^3 = 3a^3 +6a

vì 3a^3 , 6a chia hết cho 3 nên..