Cho biết tập nghiệm của bất phương trình sau đây là hợp của các khoảng rời nhau ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2017

Đây là một bài toán tương đối khó. Đầu tiên, chúng ta cần để ý đến những biến đổi sau đây:

1 x - 1 + 2 x - 2 + . . + 70 x - 70 - 5 4 = ∑ k = 1 70 k x - k - 5 4 = ∑ k ∏ x - j j ≠ k ∏ x - j - 5 4 = 4 ∑ k ∏ x - j - 5 ∏ x - j j ≠ k 4 ∏ x - j = f x g x

với k;j = 1,70

Rõ ràng g(x) = 0 có 70 nghiệm  x ∈ 1 ; 2 ; . . ; 70

Vậy f liên tục trên R , f k , f k + 1 < 0  với k = 1 , 69  và lim x → + ∞ f x < 0 ; f 70 > 0  nên cũng có đủ 70 nghiệm xen kẽ là 1 <  x 1 < 2 < x 2 < .. <  x 69

Tổng độ dài các khoảng nghiệm của bất phương trình f x g x ≥ 0  là

L = x 1 - 1 + x 2 - 2 + . . + x 70 - 70 = x 1 + x 2 + . . + x 70 - 1 + 2 + . . + 70

Để ý đa thức f có bậc 70, hệ số cao nhất là -5 và hệ số của x 69  là: 9(1 + 2 + ..+ 70 )

Do đó

L = - 9 1 + 2 + . . + 70 - 5 - 1 + 2 + . . + 70 = 1988

Đáp án D

8 tháng 1 2016

khó voho

8 tháng 1 2016

Hỏi đáp Toánbit lm bài này k giup tui

9 tháng 10 2015

ta có \(y=\frac{3\left(x+1\right)}{x-2}=3+\frac{9}{x-2}\) để các điểm trên C có tọa độ nguyên thì (x,y) nguyên

suy ra (x-2) là ước của 9

mà \(Ư\left\{9\right\}=\left\{\pm9;\pm3;\pm1\right\}\)

TH1: x-2=-9 suy ra x=-7 suy ra y=3-1=2

th2: x-2=9 suy ra x=11 suy ra y=3+1=4

th3:x-2=-3 suy ra x=-2 suy ra y=3-3=0

th4: x-2=3 suy ra x=5 suy ra y=3+3=6

th5:x-2=1 suy ra x=3 suy ra y=3+9=12

th6: x-2=-1 suy ra x=1 suy ra y=3-9=-6

kết luận....

3 tháng 10 2015

vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)

vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3

ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2

vậy ta tìm đc a và b

10 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)

\(x=0;x^2+3x+m=0\)(*)

để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0

\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)

từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)

ta tính \(y'=3x^2+6x+m\)

vì tiếp tuyến tại Dvà E vuông góc

suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)

giải pt đối chiếu với đk suy ra đc đk của m

27 tháng 12 2015

Bài nào không hiểu thì mình giải cho 

27 tháng 12 2015

dễ 

5 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)

giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau

\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)

ta đc điều phải cm

27 tháng 10 2019

.

22 tháng 2 2016

a) Vì \(\left|x\left(x^2-3\right)\right|\ge0\) nên \(x\ge0\)

Ta có : |x(x2 - 3)| = x

<=> x(x2 - 3) = x  <=> x2 - 3 = x : x = 1 <=> x2 = 4

Vì x \(\ge\) 0 nên x = 2

26 tháng 7 2019

\(x=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{4}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{8}\right)\left(1-\frac{1}{10}\right)\)

\(=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}.\frac{9}{10}=\frac{63}{256}< \frac{63}{210}=0,3\)

\(x=\sqrt{0,1}>\sqrt{0,09}=0,3\)

=> y<x

4 tháng 2 2016

Hỏi đáp Toán

https://i.imgur.com/3Wy6g2D.jpg