Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{a^2+\left(b^2-a^2\right)}{a+b}+\frac{b^2+\left(c^2-b^2\right)}{b+c}+\frac{c^2+\left(a^2-c^2\right)}{c+a}\)
\(A=\left(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\right)+\left(\frac{b^2-a^2}{a+b}+\frac{c^2-b^2}{b+c}+\frac{a^2-c^2}{c+a}\right)=2012+\left(b-a+c-b+a-c\right)=2012\)
\(A=\frac{a^2+\left(b^2-a^2\right)}{a+b}+\frac{b^2+\left(c^2-b^2\right)}{b+c}+\frac{c^2+\left(a^2-c^2\right)}{c+a}\)
\(A=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}+\left(\frac{b^2-a^2}{a+b}+\frac{c^2-b^2}{b+c}+\frac{a^2-c^2}{c+a}\right)=2012+\left(b-a+c-b+a-c\right)=2012\)
a+b+c=0 <=> a+b=-c ; a+c=-b ; b+c=-a
\(\frac{1}{b^2+c^2-a^2}=\frac{1}{\left(b-a\right)\left(a+b\right)+c^2}=\frac{1}{\left(b-a\right)\left(-c\right)+c^2}=\frac{1}{c\left(a-b+c\right)}=\frac{1}{-2bc}\)
Tương tự: \(\frac{1}{c^2+a^2-b^2}=\frac{1}{-2ca};\frac{1}{a^2+b^2-c^2}=\frac{1}{-2ab}\)
=>\(G=\frac{1}{-2bc}+\frac{1}{-2ca}+\frac{1}{-2ab}=\frac{a+b+c}{-2abc}=\frac{0}{-2abc}=0\)
\(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}+\frac{a\left(b+c\right)}{b+c}+\frac{b\left(a+c\right)}{a+c}+\frac{c\left(a+b\right)}{a+b}=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}+a+b+c=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\)
1. a + b + c = 0 \(\Rightarrow\)a + b = -c \(\Rightarrow\)( a + b )2 = ( -c )2 \(\Rightarrow\)a2 + b2 - c2 = -2ab
Tương tự : b2 + c2 - a2 = -2bc ; c2 + a2 - b2 = -2ac
Ta có : \(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)
\(=\frac{1}{-2ab}+\frac{1}{-2bc}+\frac{1}{-2ac}=\frac{-1}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(=\frac{-1}{2}\left(\frac{a+b+c}{abc}\right)=0\)
2. tương tự
3,4 . có ở dưới, câu hỏi của Quyết Tâm chiến thắng
Lần sau đăng ít một thôi toàn bài dài :v, ko phải ko làm mà là ngại làm
a)Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a}{2a+b+c}=\frac{a}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b}{a+2b+c}\le\frac{1}{4}\left(\frac{b}{a+b}+\frac{b}{b+c}\right);\frac{c}{a+b+2c}\le\frac{1}{4}\left(\frac{c}{a+c}+\frac{c}{b+c}\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\le\frac{1}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{4}\)
Xảy ra khi \(a=b=c\)
b)Đặt \(THANG=abc\left(a^2+bc\right)\left(b^2+ac\right)\left(c^2+ab\right)>0\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{b+c}{a^2+bc}-\frac{c+a}{b^2+ac}-\frac{a+b}{a^2+ab}\)
\(=\frac{a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-b^4c^2a^2-c^4a^2b^2}{THANG}\)
\(=\frac{\left(a^2b^2-b^2c^2\right)^2+\left(b^2c^2-c^2a^2\right)+\left(c^2a^2-a^2b^2\right)^2}{2THANG}\ge0\) (Đúng)
Xảy ra khi \(a=b=c\)
c)Ta có:\(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}=\frac{ab\left(a-b\right)+ac\left(a-c\right)}{\left(b+c\right)\left(b^2+c^2\right)}\)
Và \(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}=\frac{bc\left(b-c\right)+ab\left(b-a\right)}{\left(c+a\right)\left(c^2+a^2\right)}\)
\(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}=\frac{ac\left(c-a\right)+bc\left(c-b\right)}{\left(b+a\right)\left(b^2+a^2\right)}\)
Cộng theo vế 3 đăng thức trên ta có:
\(VT-VP=Σ\left[\frac{ab\left(a-b\right)}{\left(b+c\right)\left(b^2+c^2\right)}-\frac{ab\left(a-b\right)}{\left(a+c\right)\left(a^2+c^2\right)}\right]\)
\(=\left(a^2+b^2+c^2+ab+bc+ca\right)\cdotΣ\frac{ab\left(a-b\right)^2}{\left(b+c\right)\left(c+a\right)\left(b^2+c^2\right)\left(c^2+a^2\right)}\ge0\)
2 bài cuối full quy đồng mệt thật :v
ok ket qua la 2012
hghdjbv 87xvmxyuefugdbcbfc r