K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2018

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\)\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)=4\)

\(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}=1\)\(\dfrac{a+b+c}{abc}=1\)\(a+b=c=abc\)

19 tháng 8 2017

1) ta có: a(b^2 -1)(c^2 -1)+b(a^2 -1)(c^2 -1)+c(a^2-1)(b^2-1)

=(ab^2 -a)(c^2-1)+(ba^2 -b)(c^2-1)+(ca^2-c)(b^2-1)

 đén đây nhân bung ra hết rồi rút gọn và thay a+b+c=abc là đc

3 tháng 9 2018

ta có: a+b+c = abc

\(\Rightarrow\frac{a+b+c}{abc}=1\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)

Lại có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

                     \(2^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.1\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)

Cho a+b+c=abc và 1/a+1/b+1/c=2.

CMR: 1/a^2 +1/b^2 +1/c^2 =2

.

5 tháng 7 2017

Ta có \(VP=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\)\(\left(a,b,c\ne0\right)\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2a+2b+2c}{abc}\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2.\left(a+b+c\right)}{abc}\)\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+0=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=VT\)

Vậy đẳng thức được chứng minh

30 tháng 12 2019

Ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

=> \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=2^2\)

=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=4\)

=> \(2+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)

=> \(2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=2\)

=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)

=> \(abc.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=abc\)

=> \(c+a+b=abc\) (đpcm)

30 tháng 12 2019

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{ac}\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(\Rightarrow2^2=2+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(\Leftrightarrow2=2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)

\(\Leftrightarrow a+b+c=abc\)

đpcm

\(\frac{\Leftrightarrow c}{abc}+\frac{a}{abc}+\frac{b}{abc}=\frac{abc}{abc}\)

22 tháng 11 2016

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=4\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)

=>\(2+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)

=>\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)

=>\(\frac{c+a+b}{abc}=1\)

=> a+b+c=abc (đpcm)

22 tháng 11 2016

Từ \(\left(1\right)\) suy ra : \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)

Do \(\left(2\right)\) nên \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1,\) suy ra \(\frac{a+b+c}{abc}=1\\.\)

Do đó \(a+b+c=abc\)