Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) ta có: a(b^2 -1)(c^2 -1)+b(a^2 -1)(c^2 -1)+c(a^2-1)(b^2-1)
=(ab^2 -a)(c^2-1)+(ba^2 -b)(c^2-1)+(ca^2-c)(b^2-1)
đén đây nhân bung ra hết rồi rút gọn và thay a+b+c=abc là đc
ta có: a+b+c = abc
\(\Rightarrow\frac{a+b+c}{abc}=1\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)
Lại có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(2^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.1\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
Cho a+b+c=abc và 1/a+1/b+1/c=2.
CMR: 1/a^2 +1/b^2 +1/c^2 =2
.
Ta có \(VP=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\)\(\left(a,b,c\ne0\right)\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2a+2b+2c}{abc}\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2.\left(a+b+c\right)}{abc}\)\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+0=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=VT\)
Vậy đẳng thức được chứng minh
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
=> \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=2^2\)
=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=4\)
=> \(2+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)
=> \(2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=2\)
=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)
=> \(abc.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=abc\)
=> \(c+a+b=abc\) (đpcm)
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{ac}\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Rightarrow2^2=2+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Leftrightarrow2=2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)
\(\Leftrightarrow a+b+c=abc\)
đpcm
\(\frac{\Leftrightarrow c}{abc}+\frac{a}{abc}+\frac{b}{abc}=\frac{abc}{abc}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=4\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)
=>\(2+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)
=>\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)
=>\(\frac{c+a+b}{abc}=1\)
=> a+b+c=abc (đpcm)
Từ \(\left(1\right)\) suy ra : \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)
Do \(\left(2\right)\) nên \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1,\) suy ra \(\frac{a+b+c}{abc}=1\\.\)
Do đó \(a+b+c=abc\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\) ⇔ \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)=4\)
⇔ \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}=1\) ⇔ \(\dfrac{a+b+c}{abc}=1\) ⇔ \(a+b=c=abc\)