\(\dfrac{n+1}{n-2}\) , Tìm n ϵ \(ℤ\) để B có giá trị là...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 1 2024

\(B=\dfrac{n+1}{n-2}=\dfrac{n-2+3}{n-2}=1+\dfrac{3}{n-2}\)

Do 1 là số nguyên nên để B nguyên thì \(\dfrac{3}{n-2}\) nguyên

\(\Rightarrow n-2=Ư\left(3\right)\)

\(\Rightarrow n-2=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow n=\left\{-1;1;3;5\right\}\)

15 tháng 1 2024

\(ĐK:x\ne2\\ B=\dfrac{n+1}{n-2}\in Z\\ \Leftrightarrow\dfrac{n-2+3}{n-2}\in Z\\ \Leftrightarrow1+\dfrac{3}{n-2}\in Z\\ \Rightarrow\dfrac{3}{n-2}\in Z\\ \Rightarrow3⋮n-2\\ \Rightarrow n-2\inƯ\left(3\right)=\left\{\pm3;\pm1\right\}\)
 

\(n-2\)\(3\)   \(-3\)  \(1\)   \(-1\)  
\(n\)\(5\)\(-1\)\(3\)\(1\)
 TMTMTMTM

Vậy \(n\in\left\{5;-1;3;1\right\}\) thì B TM yêu cầu đề bài

24 tháng 3 2018

a)\(A=3-\frac{4}{3n+2}\)=>\(3n+2\)là ước của 4 =>\(n=0;n=-1;n=-2\)

24 tháng 3 2018

\(a,\text{ }A=\frac{n+1}{n-2}\inℤ\Leftrightarrow n+1⋮n-2\)

\(\Rightarrow n-2+3⋮n-2\)

      \(n-2⋮n-2\)

\(\Rightarrow3⋮n-2\)

\(\Rightarrow n-2\inƯ\left(3\right)\)

đến đây bn liệt kê ước của 3 r` lm tiếp!

b, \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)

để A đạt giá trị lớn nhất thì \(\frac{3}{n-2}\) lớn nhất

=> n-2 là số nguyên dương nhỏ nhất

=> n-2 = 1

=> n = 3

vậy n = 3 và \(A_{max}=1+\frac{3}{1}=4\)

29 tháng 7 2018

a) ta có: \(A=\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2.\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)

Để A nhận giá trị nguyên

=> 5/2n+3 thuộc Z

=> 5 chia hết cho 2n+3

=> 2n+3 thuộc Ư(5)={1;-1;5;-5}

nếu 2n+3 = 1 => 2n = -2 => n = -1 (TM)

2n+3 = -1 => 2n = -4 => n = -2 (TM)

2n+3 = 5 => 2n = 2 => n = 1 (TM)

2n+3 = -5 => 2n = 8 => n = -4 (TM)

KL:...

b) tìm n thuộc Z để A là phân số tối giản

Để A là phân số tối giản

\(\Rightarrow n\notin\left\{-1;-2;1;-4\right\}\)

29 tháng 7 2018

a) Để A nhận giá trị nguyên thì 4n+1 phải chia hết cho 2n+3

\(\Rightarrow4n+1⋮2n+3\)(1)

Lại có:\(\left(2n+3\right)\times2⋮2n+3\)

\(\Rightarrow4n+6⋮2n+3\)(2)

Từ (1) và (2) suy ra:

\(\left(4n+6\right)-\left(4n+1\right)⋮2n+3\)

\(\Rightarrow4n+6-4n-1⋮2n+3\)

\(\Rightarrow\left(4n-4n\right)+\left(6-1\right)⋮2n+3\)

\(\Rightarrow5⋮2n+3\)

\(\Rightarrow2n+3\inƯ\left(5\right)\)

mà Ư(5)=(-5;-1;1;5)

\(\Rightarrow2n+3\in\left(-5;-1;1;5\right)\)

\(\Rightarrow2n\in\left(-8;-4;4;8\right)\)

\(\Rightarrow n\in\left(-4;-2;2;4\right)\)

Vậy với \(n\in\left(-4;-2;2;4\right)\)

Bài 2: 

a: Để E là số nguyên thì \(3n+5⋮n+7\)

\(\Leftrightarrow3n+21-16⋮n+7\)

\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)

hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)

b: Để F là số nguyên thì \(2n+9⋮n-5\)

\(\Leftrightarrow2n-10+19⋮n-5\)

\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)

hay \(n\in\left\{6;4;29;-14\right\}\)

22 tháng 1 2022

Điều kiện :n-4\(\ne\)0\(\Leftrightarrow n\ne4\)

Để M là số nguyên thì 3\(⋮n-4\)

\(\Leftrightarrow n-4\inƯ\left(3\right)\)

\(\Leftrightarrow n-4\in\left\{-3;-1;1;3\right\}\)

\(\Leftrightarrow n\in\left\{1;3;5;7\right\}\left(TM\right)\)

Vậy .......

12 tháng 2 2020

a) Ta có: \(A=\frac{3n+2}{n}=3+\frac{2}{n}\)

A là số nguyên <=> n \(\in\)Ư ( 2 ) = { -2; -1; 1; 2 }

b) Thiếu điều kiện n là số nguyên dương.

Xét hiệu: \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{b\left(a+n\right)-a\left(b+n\right)}{b\left(b+n\right)}=\frac{ba+bn-ab-an}{b\left(b+n\right)}\)

\(=\frac{bn-an}{b\left(b+n\right)}=\frac{n\left(b-a\right)}{b\left(b+n\right)}\)

TH1: b > a 

=> b - a > 0

=> \(\frac{n\left(b-a\right)}{b\left(b+n\right)}>0\)

=> \(\frac{a+n}{b+n}>\frac{a}{b}\)

TH2: b <  a 

=> b - a < 0

=> \(\frac{n\left(b-a\right)}{b\left(b+n\right)}< 0\)

=> \(\frac{a+n}{b+n}< \frac{a}{b}\)

TH1: b = a 

=> b - a = 0

=> \(\frac{n\left(b-a\right)}{b\left(b+n\right)}=0\)

=> \(\frac{a+n}{b+n}=\frac{a}{b}\)

Kết luận:...

12 tháng 2 2020

a)Để A nguyên thì (3n+2)chia hết  cho n mà 3n chia hết cho n nên 2 phải chia hết cho n =>n\(\varepsilon\){2;1;-1;-2}

b)\(\frac{a+n}{b+n}\)=\(\frac{a}{b}\)+1>\(\frac{a}{b}\)=> Điều cần chứng minh