Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Áp dụng Bdt Cauchy-Schwarz dạng engel, ta có
\(VT\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\)
Mà theo Bđt cosi
\(\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\)
\(=\frac{\left(a+b+c+d\right)^2}{2\left[\left(a+b\right)\left(c+d\right)+\left(a+c\right)\left(b+d\right)+\left(a+d\right)\left(b+c\right)\right]}\ge\frac{2}{3}\)
Áp dụng BĐT AM-GM dạng cộng mẫu thức :\(LHS\ge a+b+c\)
Dấu = xảy ra khi và chỉ khi \(a=b=c\)
Nên bài toán của chúng ta cần chứng minh tương đương với :
\(\frac{4\left(a-b\right)^2}{a+b+c}\le0\)\(< =>4\left(a-b\right)^2\le0\)
Vậy dấu = xảy ra khi và chỉ khi \(a=b=c\)
\(1.\)\(a^3b^3\left(a^2-ab+b^2\right)\le\frac{\left(a+b\right)^8}{256}\)
\(\Leftrightarrow a^3b^3\left(a^2-ab+b^2\right)\left(a+b\right)\le\frac{\left(a+b\right)^9}{256}\)
\(\Leftrightarrow a^3b^3\left(a+b\right)^3\left(a^3+b^3\right)\le\frac{\left(a+b\right)^{12}}{256}\)
\(VT=ab\left(a+b\right).ab\left(a+b\right).ab\left(a+b\right).\left(a^3+b^3\right)\)
\(\le\left(\frac{ab\left(a+b\right)+ab\left(a+b\right)+ab\left(a+b\right)+\left(a^3+b^3\right)}{4}\right)^4\)
\(\le\frac{\left(a^3+3a^2b+3ab^2+b^3\right)^4}{256}\)
\(\le\frac{\left(a+b\right)^{12}}{256}\left(đpcm\right).\)
\(2.\) \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)
\(\Leftrightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}\)
\(\ge\frac{b}{1+b}+\frac{c}{1+c}\)
\(\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\\\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\end{cases}}\)
\(\Rightarrow\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}\ge8\sqrt{\frac{a^2b^2c^2}{\left(1+a\right)^2.\left(1+b\right)^2.\left(1+c\right)^2}}\)\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow\) \(1\ge8abc\)
\(\Leftrightarrow\) \(abc\ge\frac{1}{8}\left(đpcm\right).\)
k nguyên dương => \(k\ge1\)\(\Leftrightarrow\)\(a^k\ge a\)\(\Leftrightarrow\)\(\frac{a^k}{b+c}\ge\frac{a}{b+c}\)
Tương tự với 2 phân thức còn lại, cộng 3 bđt ta thu đc bđt Nesbit 3 ẩn => đpcm
\(VT=a\left(\frac{1}{b}+\frac{1}{c}\right)+b\left(\frac{1}{c}+\frac{1}{a}\right)+c\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\ge a.\frac{4}{b+c}+b.\frac{4}{c+a}+c.\frac{4}{a+b}=4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
sai đề phải không bạn