\(\dfrac{a^3}{b\left(2c+a\right)}+\dfrac{b^3}{c\left(2a+b\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2021

\(\Leftrightarrow\dfrac{b\left(2a-b\right)}{a\left(b+c\right)}-2+\dfrac{c\left(2b-c\right)}{b\left(c+a\right)}-2+\dfrac{a\left(2c-a\right)}{c\left(a+b\right)}-2\le\dfrac{3}{2}-6\)

\(\Leftrightarrow\dfrac{b^2+2ac}{a\left(b+c\right)}+\dfrac{c^2+2ab}{b\left(c+a\right)}+\dfrac{a^2+2bc}{c\left(a+b\right)}\ge\dfrac{9}{2}\)

\(\Leftrightarrow\dfrac{b^2}{ab+ac}+\dfrac{c^2}{bc+ab}+\dfrac{a^2}{ac+bc}+\dfrac{2c^2}{bc+c^2}+\dfrac{2a^2}{ac+a^2}+\dfrac{2b^2}{ab+b^2}\ge\dfrac{9}{2}\)

Ta có:

\(VT\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}+\dfrac{2\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)

\(\Leftrightarrow VT\ge\left(a+b+c\right)^2\left(\dfrac{1}{2\left(ab+bc+ca\right)}+\dfrac{1}{a^2+b^2+c^2+ab+bc+ca}+\dfrac{1}{a^2+b^2+c^2+ab+bc+ca}\right)\)

\(\Leftrightarrow VT\ge\dfrac{9\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)+2\left(a^2+b^2+c^2+ab+bc+ca\right)}\)

\(\Leftrightarrow VT\ge\dfrac{9\left(a+b+c\right)^2}{2\left(a+b+c\right)^2}=\dfrac{9}{2}\)

19 tháng 7 2018

\(BDT\Leftrightarrow2a^4b+2b^4c+2c^4a+3ab^4+3bc^4+3ca^4\ge5a^2b^2c+5a^2bc^2+5ab^2c^2\)

Ta chứng minh được \(ab^4+bc^4+ca^4\ge a^2b^2c+a^2bc^2+ab^2c^2\)

\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)

\(VT=\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ac}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=VP\)

Vậy ta cần chứng minh \(2a^4b+2b^4c+2c^4a+2ab^4+2bc^4+2ca^4\ge4a^2b^2c+4a^2bc^2+4ab^2c^2\)

\(\Leftrightarrow\sum_{cyc}\left(2c^3+bc^2-b^2c+ac^2-a^2c+3ab^2+3a^2b\right)\left(a-b\right)^2\ge0\)

Dấu "=" xảy ra khi \(a=b=c\)

9 tháng 7 2018

sos là giúp đở = cứu ; helps cũng vậy

22 tháng 3 2021

Đặt \(A=\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)

Vì \(a,b,c>0\)nên áp dụng bất đẳng thức Cô-si cho 3 số dương, ta được:

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt[3]{\frac{a^3\left(1+b\right)\left(1+c\right)}{\left(1+b\right)\left(1+c\right).64}}\)\(=3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\left(1\right)\)

Chứng minh tương tự, ta được:

\(\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+a}{8}\ge\frac{3b}{4}\left(2\right)\)

\(\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3a}{4}\left(3\right)\)

Từ (1), (2), (3), ta được:

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)\(+\frac{1+a}{8}+\frac{1+b}{8}+\frac{1+c}{8}+\frac{1+a}{8}+\frac{1+b}{8}+\frac{1+c}{8}\)\(\ge\frac{3a}{4}+\frac{3b}{4}+\frac{3c}{4}\)

\(\Leftrightarrow A+\frac{1+a}{4}+\frac{1+b}{4}+\frac{1+c}{4}\ge\frac{3a}{4}+\frac{3b}{4}+\frac{3c}{4}\)

\(\Leftrightarrow A+\frac{1+a+1+b+1+c}{4}\ge\frac{3a+3b+3c}{4}\)

\(\Leftrightarrow A+\frac{3+a+b+c}{4}\ge\frac{3\left(a+b+c\right)}{4}\)

\(\Leftrightarrow A\ge\frac{3\left(a+b+c\right)}{4}-\frac{3-a-b-c}{4}\)

\(\Leftrightarrow A\ge\frac{3\left(a+b+c\right)-\left(a+b+c\right)}{4}-\frac{3}{4}\)

\(\Leftrightarrow A\ge\frac{2\left(a+b+c\right)}{4}-\frac{3}{4}\left(4\right)\)

Mặt khác,  vì \(a,b,c>0\)nên áp dụng bất đẳng thức Cô-si cho 3 số dương, ta được:

\(a+b+c\ge3\sqrt[3]{abc}\)

Mà \(abc\ge1\Leftrightarrow\sqrt[3]{abc}\ge1\Leftrightarrow3\sqrt[3]{abc}\ge3\)

Do đó:

\(a+b+c\ge3\)

\(\Leftrightarrow2\left(a+b+c\right)\ge6\)

\(\Leftrightarrow\frac{2\left(a+b+c\right)}{4}\ge\frac{6}{4}=\frac{3}{2}\)

\(\Leftrightarrow\frac{2\left(a+b+c\right)}{4}-\frac{3}{4}\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\left(5\right)\)

Từ (4) và (5), ta được:


\(A\ge\frac{3}{4}\)(điều phải chứng minh)

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\abc=1\end{cases}}\Leftrightarrow a=b=c=1\)

Vậy \(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\)với \(a,b,c>0\)và \(abc\ge1\)

13 tháng 7 2021

Với   x,y>0x,y>0  đã cho, áp dụng bất đẳng thức Cô si ta có

                         \dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{1+b}{x}+\dfrac{1+c}{y}\ge\dfrac{3a}{\sqrt[3]{xy}}(1+b)(1+c)a3+x1+b+y1+c3xy3a

Kỳ vọng rằng bất đẳng thức cần chứng minh trở thành đẳng thức khi a=b=c=1a=b=c=1, ta chọn x>0x>0 sao cho \dfrac{a^3}{\left(1+b\right)\left(1+c\right)}=\dfrac{1+b}{x}=\dfrac{1+c}{y}(1+b)(1+c)a3=x1+b=y1+c xảy ra khi a=b=c=1a=b=c=1, tức là     \dfrac{1}{4}=\dfrac{2}{x}=\dfrac{2}{y}\Leftrightarrow x=y=841=x2=y2x=y=8. Vì vậy

                       \dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{1+b}{8}+\dfrac{1+c}{8}\ge\dfrac{3a}{4}(1+b)(1+c)a3+81+b+81+c43a 

Viết hai bất đẳng thức tương tự rồi cộng theo vế ba bất đẳng thức này ta có

     \dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}+\dfrac{3}{4}+\dfrac{a+b+c}{4}\ge(1+b)(1+c)a3+(1+c)(1+a)b3+(1+a)(1+b)c3+43+4a+b+c

                                                          \dfrac{3}{4}\left(a+b+c\right)43(a+b+c)

Hay   \dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\dfrac{1}{2}\left(a+b+c\right)-\dfrac{3}{4}(1+b)(1+c)a3+(1+c)(1+a)b3+(1+a)(1+b)c321(a+b+c)43

Mà    a+b+c\ge3\sqrt[3]{abc}\ge3a+b+c33abc3 . Suy ra

                        \dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\dfrac{3}{4}(1+b)(1+c)a3+(1+c)(1+a)b3+(1+a)(1+b)c343

 
              
 
AH
Akai Haruma
Giáo viên
29 tháng 3 2018

Lời giải:

Áp dụng BĐT AM-GM ta có:

\(2a+b+c=(a+b)+(a+c)\geq 2\sqrt{(a+b)(a+c)}\)

\(\Rightarrow (2a+b+c)^2\geq 4(a+b)(a+c)\)

\(\Rightarrow \frac{1}{(2a+b+c)^2}\leq \frac{1}{4(a+b)(a+c)}\)

Hoàn toàn tương tự với các phân thức còn lại suy ra:

\(P\leq \frac{1}{4}\left(\frac{1}{(a+b)(a+c)}+\frac{1}{(b+c)(b+a)}+\frac{1}{(c+a)(c+b)}\right)\)

\(\Leftrightarrow P\leq \frac{1}{4}.\frac{(b+c)+(c+a)+(a+b)}{(a+b)(b+c)(c+a)}\)

\(\Leftrightarrow P\leq \frac{a+b+c}{2(a+b)(b+c)(c+a)}\)

Lại có: \((a+b)(b+c)(c+a)\geq 2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8abc\) (theo AM-GM)

\(\Rightarrow P\leq \frac{a+b+c}{2.8abc}=\frac{a+b+c}{16abc}(1)\)

Tiếp tục áp dụng BĐT AM-GM:

\(\frac{1}{a^2}+\frac{1}{b^2}\geq \frac{2}{ab}; \frac{1}{b^2}+\frac{1}{c^2}\geq \frac{2}{bc}; \frac{1}{c^2}+\frac{1}{a^2}\geq \frac{2}{ac}\)

\(\Rightarrow 2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\geq 2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(\Leftrightarrow 3\geq \frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}\)

\(\Rightarrow a+b+c\leq 3abc(2)\)

Từ \((1); (2)\Rightarrow P\leq \frac{3abc}{16abc}=\frac{3}{16}\)

Vậy \(P_{\max}=\frac{3}{16}\). Dấu bằng xảy ra khi \(a=b=c=1\)

22 tháng 2 2018

Áp dụng BĐt cô-si, ta có \(\frac{2\left(a+b\right)^2}{2a+3b}\ge\frac{8ab}{2a+3b}=\frac{8}{\frac{2}{b}+\frac{3}{a}}\)

                                      \(\frac{\left(b+2c\right)^2}{2b+c}\ge\frac{8bc}{2b+c}=\frac{8}{\frac{2}{c}+\frac{1}{b}}\)

                                        \(\frac{\left(2c+a\right)^2}{c+2a}\ge\frac{8ac}{c+2a}\ge\frac{8}{\frac{1}{a}+\frac{2}{c}}\)

Cộng 3 cái vào, ta có 

A\(\ge8\left(\frac{1}{\frac{2}{b}+\frac{3}{a}}+\frac{1}{\frac{1}{b}+\frac{2}{c}}+\frac{1}{\frac{1}{a}+\frac{2}{c}}\right)\ge8\left(\frac{9}{\frac{3}{b}+\frac{4}{c}+\frac{4}{a}}\right)=8.\frac{9}{3}=24\)

Vậy A min = 24 

Neetkun ^^

22 tháng 2 2018

bạn tìm ra dấu= xảy ra khi nào

16 tháng 4 2017

Nhức nhối mãi bài này vì nó làm lag hết máy

Giải

Đặt \(x=\dfrac{b+c}{a};y=\dfrac{c+a}{b};z=\dfrac{a+b}{c}\)

Ta phải chứng minh \(Σ\dfrac{\left(x+2\right)^2}{x^2+2}\le8\)

\(\LeftrightarrowΣ\dfrac{2x+1}{x^2+2}\le\dfrac{5}{2}\LeftrightarrowΣ\dfrac{\left(x-1\right)^2}{x^2+2}\ge\dfrac{1}{2}\)

Lại theo BĐT Cauchy-Schwarz ta có:

\(Σ\dfrac{\left(x-1\right)^2}{x^2+2}\ge\dfrac{\left(x+y+z-3\right)^2}{x^2+y^2+z^2+6}\)

Ta còn phải chứng minh

\(2\left(x^2+y^2+z^2+2xy+2yz+2xz-6x-6y-6z+9\right)\)\(\ge x^2+y^2+z^2+6\)

\(\Leftrightarrow x^2+y^2+z^2+4\left(xy+yz+xz\right)-12\left(x+y+z\right)+12\ge0\)

Bây giờ có \(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\ge12\left(xyz\ge8\right)\)

Còn phải chứng minh \(\left(x+y+z\right)^2+24-12\left(x+y+z\right)+12\ge0\)

\(\Leftrightarrow\left(x+y+z-6\right)^2\ge0\) (luôn đúng)

16 tháng 4 2017

Bởi vì BĐT là thuần nhất, ta có thể chuẩn hóa \(a+b+c=3\). Khi đó

\(\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}=\dfrac{a^2+6a+9}{3a^2-6a+9}=\dfrac{1}{3}\left(1+2\cdot\dfrac{4a+3}{2+\left(a-1\right)^2}\right)\)

\(\le\dfrac{1}{3}\left(1+2\cdot\dfrac{4a+3}{2}\right)=\dfrac{4a+4}{3}\)

Tương tự ta cho 2 BĐT còn lại ta cũng có:

\(\dfrac{\left(2b+c+a\right)^2}{2b^2+\left(a+c\right)^2}\ge\dfrac{4b+4}{3};\dfrac{\left(2c+b+a\right)^2}{2c^2+\left(a+b\right)^2}\ge\dfrac{4c+4}{3}\)

Cộng theo vế 3 BĐT trên ta có:

\(Σ\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}\geΣ\left(4a+4\right)=8\)

NV
28 tháng 6 2021

Đề bài sai với \(a=b=c=2\)

28 tháng 6 2021

Có xóa luôn câu hỏi không ạ?