Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đpcm<=>(\(\frac{a}{b+c+d}\)-\(\frac{1}{3}\))+(\(\frac{b}{a+c+d}\)-\(\frac{1}{3}\))+(\(\frac{c}{a+b+d}\)-\(\frac{1}{3}\))+(\(\frac{d}{a+b+c}\)-\(\frac{1}{3}\))\(\ge\)0
Xét giá trị của các dấu ngoặc,dễ thấy chúng đều lớn hơn hoặc bằng 0
Vậy thì bất đẳng thức trên là đúng hay đpcm là đúng
\(a+b+c\ge\frac{a-b}{a+5}+\frac{b-c}{b+5}+\frac{c-a}{c+5}\)
\(\Leftrightarrow\left(a-\frac{a}{a+5}+\frac{a}{c+5}\right)+\left(b-\frac{b}{b+5}+\frac{b}{a+5}\right)+\left(c-\frac{c}{c+5}+\frac{c}{b+5}\right)\ge0\)
\(\Leftrightarrow a\left(\frac{ac+6a+4c+25}{\left(a+5\right)\left(c+5\right)}\right)+b\left(\frac{ab+6b+4a+25}{\left(b+5\right)\left(a+5\right)}\right)+c\left(\frac{bc+6c+4b+25}{\left(c+5\right)\left(b+5\right)}\right)\ge0\)
Cái này đúng vì a, b, c không âm
Dấu = xảy ra khi \(a=b=c=0\)
1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)
Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu a + b + c + d = 0
=> a + b = -(c + d)
=> b + c = (-a + d)
=> c + d = -(a + b)
=> d + a = (-b + c)
Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4
Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)
Khi đó M = 1 + 1 + 1 + 1 = 4
2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)
Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)
b) 72x + 72x + 3 = 344
=> 72x + 72x.73 = 344
=> 72x.(1 + 73) = 344
=> 72x = 1
=> 72x = 70
=> 2x = 0 => x = 0
c) Ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)
=> 2x + 2 = 14 => x = 6 ;
2y - 4 = 6 => y = 5 ;
6 + 5 + z = 17 => z = 6
Vậy x = 6 ; y = 5 ; z = 6
3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau)
=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;
Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0
Vậy c = 0 hoặc b = 0
c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau)
=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)
Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)
Vậy P = 8
2. b) \(7^{2x}+7^{2x+3}=344\)
\(7^{2x}\cdot\left(1+7^3\right)=344\)
\(7^{2x}\cdot\left(1+343\right)=344\)
\(7^{2x}\cdot344=344\)
\(7^{2x}=1\)
\(7^{2x}=7^0\)
\(2x=0\)
\(x=0\)
Ta gọi 3 số lần lượt là a , b , c
Theo đề bài ta có :
\(\left\{\begin{matrix}\frac{a}{\frac{2}{5}}=\frac{b}{\frac{3}{4}}=\frac{c}{\frac{1}{6}}\\a^2+b^2+c^2=24309\end{matrix}\right.\)
Ta có \(\frac{a}{\frac{2}{5}}=\frac{b}{\frac{3}{4}}=\frac{c}{\frac{1}{6}}\)
\(\Leftrightarrow\frac{a^2}{\left(\frac{2}{5}\right)^2}=\frac{b^2}{\left(\frac{3}{4}\right)^2}=\frac{c^2}{\left(\frac{1}{6}\right)^2}\)
\(\Leftrightarrow\frac{a^2}{\frac{4}{25}}=\frac{b^2}{\frac{9}{16}}=\frac{c^2}{\frac{1}{36}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a^2}{\frac{4}{25}}=\frac{b^2}{\frac{9}{16}}=\frac{c^2}{\frac{1}{36}}=\frac{a^2+b^2+c^2}{\frac{2701}{3600}}=\frac{24309}{\frac{2701}{3600}}=32400\)
\(\Rightarrow\left\{\begin{matrix}\frac{a}{\frac{2}{5}}=32400\\\frac{b}{\frac{3}{4}}=32400\\\frac{c}{\frac{1}{6}}=32400\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}a=32400.\frac{2}{5}=12960\\b=32400.\frac{3}{4}=24300\\c=32400.\frac{1}{6}=5400\end{matrix}\right.\)
\(\Rightarrow A=12960+24300+5400=42660\)
Vậy số A = 42660
Ta có : a/c=c/b
=> c^2=a.b (1)
Cm:a/b=a^2+c^2/b^2+c^2 (2)
Từ (1),(2) suy ra :
a^2+c^2/b^2+c^2=a^2+a.b/b^2+a.b=a(a+b)/b(b+a)=a/b
Vậy a/b = a^2+c^2/b^2+c^2 (đpcm)
\(\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
\(\ge\left(a+b+c\right)\left(\frac{9}{b+c+c+a+a+b}\right)=\frac{\left(a+b+c\right)9}{2\left(a+b+c\right)}=\frac{9}{2}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{9}{2}-3=\frac{3}{2}\)
\(VT=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1-3\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(=\frac{1}{2}[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)]\)\(\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\)
C/m BĐT phụ \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\text{(*) }\) với x, y, z dương
Áp dụng BĐT Cô-si ta có:
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9\)
ÁP dụng BĐT (*) ta có:
\(VT=\frac{1}{2}\left[\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\right]\)\(\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\)
\(VT\ge\frac{1}{2}.9-3=\frac{3}{2}\left(đpcm\right)\)