Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có BĐT phụ \(\frac{5b^3-a^3}{ab+3b^2}\le2b-a\)
\(\Leftrightarrow-\frac{\left(a-b\right)^2\left(a+b\right)}{b\left(a+3b\right)}\le0\) *luôn đúng*
Tương tự cho 2 BĐT còn lại cũng có:
\(P\le2a-b+2b-c+2c-a=a+b+c=3\)
Dấu '=" khi \(a=b=c=1\)
Xét \(\frac{5b^3-a^3}{ab+3b^2}-\left(2b-a\right)=\frac{5a^3-a^3-\left(ab+3b^2\right)\left(2b-a\right)}{ab+3b^2}\)
\(=\frac{5b^3-a^3-\left(2ab^2-a^2b+6b^3-3b^2a\right)}{ab+3b^2}=\frac{-b^5-a^3+a^2b+b^2a}{ab+3b^2}\)
\(=\frac{-\left(a+b\right)\left(a-b\right)^2}{ab+3b^3}\le0\)
\(\Rightarrow\frac{5b^3-a^3}{ab+3b^2}\le2b-a\)
Ta có 2 BĐT tương tự \(\hept{\begin{cases}\frac{5c^3-b^3}{bc+3c^2}\le2c-b\\\frac{5a^3-c^3}{ca+3a^2}\le2a-c\end{cases}}\)
Cộng 3 vế BĐT trên ta được \(P\le2\left(a+b+c\right)-\left(a+b+c\right)=a+b+c=3\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}a=b=c\\a+b+c=3\end{cases}\Leftrightarrow a=b=c=1}\)
Lời giải:
Bạn nhớ tới bổ đề sau: Với $a,b>0$ thì $a^3+b^3\geq ab(a+b)$.
Áp dụng vào bài:
$5a^3-b^3\leq 5a^3-[ab(a+b)-a^3]=6a^3-ab(a+b)$
$\Rightarrow \frac{5a^3-b^3}{ab+3a^2}\leq \frac{6a^3-ab(a+b)}{ab+3a^2}=\frac{6a^2-ab-b^2}{3a+b}=\frac{(3a+b)(2a-b)}{3a+b}=2a-b$
Tương tự:
$\frac{5b^3-c^3}{bc+3b^2}\leq 2b-c; \frac{5c^3-a^3}{ca+3c^2}\leq 2c-a$
Cộng theo vế:
$\Rightarrow \text{VT}\leq a+b+c=3$
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
Đề bài bị trái dấu bạn nhé
CM \(\frac{5b^3-a^3}{ab+3b^2}\le2b-a\)
\(\Leftrightarrow5b^3-a^3\le\left(2b-a\right)\left(ab+3b^2\right)\)
\(\Leftrightarrow5b^3-a^3\le2ab^2+6b^3-a^2b-3ab^2\)
\(\Leftrightarrow b^3+a^3-ab^2-ba^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)đúng với mọi a, b>0
CMTT các hạng tử khác
\(\Rightarrow P=\frac{5b^3-a^3}{ab+3b^3}+\frac{5c^3-b^3}{bc+3c^3}+\frac{5a^3-c^3}{ac+3a^2}\le2b-a+2c-b+2a-c=a+b+c\)
vậy đề sai rồi chứ mình giải mãi chả ra mà toàn ngược dấu nên mình tưởng mình sai
Ta đi chứng minh: \(\frac{5b^3-a^3}{ab+3b^3}\le2b-a\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)
Một cách tương tự:\(\frac{5c^3-b^3}{bc+3c^3}\le2c-b;\frac{5a^3-c^3}{ca+3a^2}\le2a-c\)
Cộng lại thì:
\(LHS\le a+b+c=3\)
Đẳng thức xảy ra tại a=b=c=1
Xét Bất đẳng thức phụ:
\(\frac{5b^3-a^3}{ab+3b^2}\le2b-a\Leftrightarrow5b^3-a^3\le\left(2b-a\right)\left(ab+3b^2\right)\)
\(\Leftrightarrow a^2b+ab^2\le a^3+b^3\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)
Tương tự ta có:
\(\frac{5a^3-b^3}{ab+3a^2}\le2a-c\);\(\frac{5c^3-a^3}{ac+3c^2}\le2c-b\)
Cộng lại theo vế ta có:
\(\frac{5a^3-b^3}{ab+3a^2}+\frac{5b^3-c^3}{bc+3b^2}+\frac{5c^3-a^3}{ac+3c^2}\le2b-a+2a-c+2c-b=a+b+c=2007\)
Đpcm
Câu hỏi của NGUYỄN DOÃN ANH THÁI - Toán lớp 9 - Học toán với OnlineMath làm tương tự chỗ cuối thay a+b+c=2015 là dc