Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét Bất đẳng thức phụ:
\(\frac{5b^3-a^3}{ab+3b^2}\le2b-a\Leftrightarrow5b^3-a^3\le\left(2b-a\right)\left(ab+3b^2\right)\)
\(\Leftrightarrow a^2b+ab^2\le a^3+b^3\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)
Tương tự ta có:
\(\frac{5a^3-b^3}{ab+3a^2}\le2a-c\);\(\frac{5c^3-a^3}{ac+3c^2}\le2c-b\)
Cộng lại theo vế ta có:
\(\frac{5a^3-b^3}{ab+3a^2}+\frac{5b^3-c^3}{bc+3b^2}+\frac{5c^3-a^3}{ac+3c^2}\le2b-a+2a-c+2c-b=a+b+c=2007\)
Đpcm
Câu hỏi của NGUYỄN DOÃN ANH THÁI - Toán lớp 9 - Học toán với OnlineMath làm tương tự chỗ cuối thay a+b+c=2015 là dc
b) Ta có:
\(\frac{a}{\sqrt{b^2+3}}+\frac{a}{\sqrt{b^2+3}}+\frac{b^2+3}{8}+\frac{a^2}{2}\)\(\ge\)\(4\sqrt[4]{\frac{a^4}{16}}=2a\)
\(\frac{b}{\sqrt{c^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c^2+3}{8}+\frac{b^2}{2}\ge4\sqrt[4]{\frac{b^4}{16}}=2b\)
\(\frac{c}{\sqrt{a^2+3}}+\frac{c}{\sqrt{a^2+3}}+\frac{a^2+3}{8}+\frac{c^2}{2}\ge4\sqrt[4]{\frac{c^4}{16}}=2c\)
Cộng lại ta đươc:
\(2\left(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\right)+\)\(\frac{5\left(a^2+b^2+c^2\right)+9}{8}\)\(\ge2\left(a+b+c\right)\)
⇒ \(2\left(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\right)\ge\)\(6-\frac{5\left(a^2+b^2+c^2\right)+9}{8}\)(1)
Lại có: \(a^2+1\ge2a\); \(b^2+1\ge2b\); \(c^2+1\ge2c\)
Suy ra \(a^2+b^2+c^2\ge2\left(a+b+c\right)-3=3\)
Khi đó (1)⇔ \(2\left(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\right)\ge\)\(6-\frac{5.3+9}{8}=3\)
⇒ \(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\ge\frac{3}{2}\)
Dấu "=" xảy ra ⇔ \(a=b=c=1\)
\(\left(a^2+3b^2\right)\left(1+3\right)\ge\left(a+3b\right)^2\Rightarrow\sqrt{a^2+3b^2}\ge\frac{a+3b}{2}\)
\(\Rightarrow P=\sum\frac{ab}{\sqrt{a^2+3b^2}}\le2\sum\frac{ab}{a+3b}=2\sum\frac{ab}{a+b+b+b}\)
\(\Rightarrow P\le\frac{1}{8}\sum ab\left(\frac{1}{a}+\frac{3}{b}\right)=\frac{1}{8}\sum\left(3a+b\right)=\frac{1}{2}\left(a+b+c\right)=\frac{3}{2}\)
"=" \(\Leftrightarrow a=b=c=1\)
Ta có BĐT phụ \(\frac{5b^3-a^3}{ab+3b^2}\le2b-a\)
\(\Leftrightarrow-\frac{\left(a-b\right)^2\left(a+b\right)}{b\left(a+3b\right)}\le0\) *luôn đúng*
Tương tự cho 2 BĐT còn lại cũng có:
\(P\le2a-b+2b-c+2c-a=a+b+c=3\)
Dấu '=" khi \(a=b=c=1\)
Xét \(\frac{5b^3-a^3}{ab+3b^2}-\left(2b-a\right)=\frac{5a^3-a^3-\left(ab+3b^2\right)\left(2b-a\right)}{ab+3b^2}\)
\(=\frac{5b^3-a^3-\left(2ab^2-a^2b+6b^3-3b^2a\right)}{ab+3b^2}=\frac{-b^5-a^3+a^2b+b^2a}{ab+3b^2}\)
\(=\frac{-\left(a+b\right)\left(a-b\right)^2}{ab+3b^3}\le0\)
\(\Rightarrow\frac{5b^3-a^3}{ab+3b^2}\le2b-a\)
Ta có 2 BĐT tương tự \(\hept{\begin{cases}\frac{5c^3-b^3}{bc+3c^2}\le2c-b\\\frac{5a^3-c^3}{ca+3a^2}\le2a-c\end{cases}}\)
Cộng 3 vế BĐT trên ta được \(P\le2\left(a+b+c\right)-\left(a+b+c\right)=a+b+c=3\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}a=b=c\\a+b+c=3\end{cases}\Leftrightarrow a=b=c=1}\)
Đề bài bị trái dấu bạn nhé
CM \(\frac{5b^3-a^3}{ab+3b^2}\le2b-a\)
\(\Leftrightarrow5b^3-a^3\le\left(2b-a\right)\left(ab+3b^2\right)\)
\(\Leftrightarrow5b^3-a^3\le2ab^2+6b^3-a^2b-3ab^2\)
\(\Leftrightarrow b^3+a^3-ab^2-ba^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)đúng với mọi a, b>0
CMTT các hạng tử khác
\(\Rightarrow P=\frac{5b^3-a^3}{ab+3b^3}+\frac{5c^3-b^3}{bc+3c^3}+\frac{5a^3-c^3}{ac+3a^2}\le2b-a+2c-b+2a-c=a+b+c\)
vậy đề sai rồi chứ mình giải mãi chả ra mà toàn ngược dấu nên mình tưởng mình sai