Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Tọa độ A là:
y=0 và -1/2x+4=0
=>x=8 và y=0
=>A(8;0)
Tọa độ B là;
y=0 và -x+4=0
=>x=4 và y=0
=>B(4;0)
Tọa độ C là;
1/2x+4=-x+4 và y=-x+4
=>x=0 và y=4
=>C(0;4)
b: A(8;0); B(4;0); C(0;4)
\(AB=\sqrt{\left(4-8\right)^2+\left(0-0\right)^2}=4\)
\(AC=\sqrt{\left(0-8\right)^2+\left(4-0\right)^2}=4\sqrt{5}\)
\(BC=\sqrt{4^2+4^2}=4\sqrt{2}\)
\(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{2}{\sqrt{5}}\)
=>\(sinBAC=\dfrac{1}{\sqrt{5}}\)
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinBAC=\dfrac{1}{2}\cdot4\cdot4\sqrt{5}\cdot\dfrac{1}{\sqrt{5}}=8\)
\(C=4+4\sqrt{5}+4\sqrt{2}\)
a:
b:
Bổ sung đề: A,B lần lượt là giao của (d1) với (d2) và (d3)
Tọa độ A là:
3x=1/3x và y=3x
=>x=0 và y=0
Tọa độ B là:
3x=-x+4 và y=3x
=>x=1 và y=3
a: Tọa độ của điểm A là:
\(\left\{{}\begin{matrix}x_A=0\\y_A=0+3=3\end{matrix}\right.\)
Vậy: A(0;3)
Tọa độ điểm B là:
\(\left\{{}\begin{matrix}x_B=0\\y_B=3\cdot0+7=7\end{matrix}\right.\)
Vậy: B(0;7)
Tọa độ trung điểm I của AB là:
\(\left\{{}\begin{matrix}x_I=\dfrac{0+0}{2}=0\\y_I=\dfrac{3+7}{2}=5\end{matrix}\right.\)
Vậy: I(0;5)
b: Tọa độ điểm J là:
\(\left\{{}\begin{matrix}3x+7=x+3\\y=x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)
Vậy: J(-2;1)
I(0;5)
O(0;0)
\(OI=5\)
\(OJ=\sqrt{\left[0-\left(-2\right)\right]^2+\left(0-1\right)^2}=\sqrt{5}\)
\(JI=\sqrt{\left(0+2\right)^2+\left(5-1\right)^2}=2\sqrt{5}\)
Vì \(OI^2=OJ^2+JI^2\)
nên ΔOIJ vuông tại J
(d1): y = 1/2x + 2
và (d2): y = -x + 2
1. Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ Oxy.
(d1) là đường thẳng đi qua hai điểm (0; 2) và (-4; 0)
(d2) là đường thẳng đi qua hai điểm (0; 2) và (2;0)
2. Tính chu vi và diện tích của tam giác ABC
(d1) và (d2) cùng cắt nhau tại một điểm trên trục tung có tung độ bằng 2
Áp dụng định lý Pi ta go cho các tam giác AOC và BOC vuông ở O ta được:
\(AC=\sqrt{4^2+2^2}=\sqrt{20}=2\sqrt{5}\)
\(BC=\sqrt{2^2+2^2}=\sqrt{8}=2\sqrt{2}\)
Chu vi tam giác ABC : AC + BC + AB= 2√5 + 2√2 + 6
≈ 13,30
Diện tích tam giác ABC
\(\frac{1}{2}.OC.AB=\frac{1}{2}.2.6=6CM^2\)
NHÉ THAK NHÌU