Cho  b^2=a.c CMR a^2+b^2/b^2=a/c

  • K
    Khách

    Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

    28 tháng 6 2015

    /b = c/d           => a/c = b/d 

    => a2 / c2 = b2 / d2  = ab / cd

    <=> 7a/ 7c2 = 11a2 / 11c = 8b2 / 8d2 = 3ab / 3cd

    => 7a2 + 3ab / 7c+ 3cd = 11a2 - 8b2 / 11c2 - 8d2

    => 7a2 + 3ab / 11a2 - 8b= 7c+ 3cd / 11c2 - 8d2              

    =>  (đpcm)

    27 tháng 12 2019

    cc yêu cl

    15 tháng 10 2017

    Ta có:

    \(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\left(1\right)\)

    \(c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\left(2\right)\)

    Từ (1) và (2), suy ra: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)

    \(\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\)

    Vậy \(\dfrac{a}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)(đpcm)

    ~ Học tốt!~

    19 tháng 12 2017

    Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=t\Leftrightarrow\left\{{}\begin{matrix}a=bt\\c=dt\end{matrix}\right.\)

    Ta có: \(\left\{{}\begin{matrix}\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2t^2+3b^2t}{11b^2t^2-8b^2}=\dfrac{b^2\left(7t^2+3t\right)}{b^2\left(11t^2-8\right)}=\dfrac{7t^2+3t}{11t^2-8}\\\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2t^2+3d^2t}{11d^2t^2-8d^2}=\dfrac{d^2\left(7t^2+3t\right)}{d^2\left(11t^2-8\right)}=\dfrac{7t^2+3t}{11t^2-8}\end{matrix}\right.\Rightarrowđpcm\)