\(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2015

/b = c/d           => a/c = b/d 

=> a2 / c2 = b2 / d2  = ab / cd

<=> 7a/ 7c2 = 11a2 / 11c = 8b2 / 8d2 = 3ab / 3cd

=> 7a2 + 3ab / 7c+ 3cd = 11a2 - 8b2 / 11c2 - 8d2

=> 7a2 + 3ab / 11a2 - 8b= 7c+ 3cd / 11c2 - 8d2              

=>  (đpcm)

31 tháng 8 2019

#)Giải :

\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\Leftrightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\Leftrightarrow\frac{7a^2}{7c^2}=\frac{11a^2}{11c^2}=\frac{8b^2}{8d^2}=\frac{3ab}{3cd}\)

\(\Leftrightarrow\frac{7a^2+3ab}{7c^2+3cd}=\frac{11a^2-8b^2}{11a^2-8d^2}\Leftrightarrow\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\left(đpcm\right)\)

31 tháng 8 2019

#)Giải : (Cách 2)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Leftrightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7b^2k^2+3b^2k}{11b^2k^2-8d^2}=\frac{b^2\left(7k^2-3k\right)}{b^2\left(11k^2-8\right)}=\frac{7k^2+3k}{11k^2-8}\\\frac{7c^2+3cd}{11c^2-8d^2}=\frac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}=\frac{d^2\left(7k^2-3k\right)}{d^2\left(11k^2-8\right)}=\frac{7k^2+3k}{11k^2-8}\end{cases}}}\)

=> đpcm

1 tháng 3 2018

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow a=bk;c=dk.\)

\(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7b^2k+3bkb}{11b^2k-8b^2}=\frac{\left(7+3\right).b^2k}{ \left(11k-8\right).b^2}=k\)

=\(\frac{7c^2+3cd}{11c^2-8d^2}=\frac{7d^2k+3dkd}{11d^2k-8d^2}=\frac{\left(7+3\right).d^2k}{\left(11k-8\right).d^2}=k\)

24 tháng 5 2016

cho \(\frac{a}{b}\)=\(\frac{c}{d}\)=k=> a=bk; c=dk

a. Vế trái =\(\frac{5a+3b}{5a-3b}\)=\(\frac{5bk+3b}{5bk-3b}\)=\(\frac{b\left(5k+3\right)}{b\left(5k-3\right)}\)=\(\frac{\left(5k+3\right)}{\left(5k-3\right)}\)(1)

Vế phải =\(\frac{5c+3d}{5c-3d}\)=\(\frac{5dk+3d}{5dk-3d}\)=\(\frac{d\left(5k+3\right)}{d\left(5k-3\right)}\)=\(\frac{\left(5k+3\right)}{\left(5k-3\right)}\)(2)

Từ (1) và (2) ta có\(\frac{5a+3b}{5a-3b}\)=\(\frac{5c+3d}{5c-3d}\)

b. Vế trái=\(\frac{7a^2+3ab}{11a^2-8b^2}\)=\(\frac{7b^2k^2+3b.k.b}{11b^2.k^2-8b^2}\)=\(\frac{b^2.k\left(7k+3\right)}{b^2\left(11k^2-8\right)}\)=\(\frac{k\left(7k+3\right)}{\left(11k^2-8\right)}\)(1)

Vế phải =\(\frac{7c^2+3cd}{11c^2-8d^2}\)=\(\frac{7d^2k^2+3d.k.d}{11d^2.k^2-8d^2}\)=\(\frac{d^2.k\left(7k+3\right)}{d^2\left(11k^2-8\right)}\)=\(\frac{k\left(7k+3\right)}{\left(11k^2-8\right)}\)(2)

Từ (1) và (2) ta có: \(\frac{7a^2+3ab}{11a^2-8b^2}\)=\(\frac{7c^2+3cd}{11c^2-8d^2}\)

24 tháng 5 2016

giups mình với cảm ơn

 

4 tháng 11 2015

câu hỏi tương tự nha bạn !!!

13 tháng 6 2015

bài này mk giải rùi:

a/b = c/d           => a/c = b/d 

=> a2 / c2 = b2 / d2  = ab / cd

<=> 7a/ 7c2 = 11a2 / 11c = 8b2 / 8d2 = 3ab / 3cd

=> 7a2 + 3ab / 7c+ 3cd = 11a2 - 8b2 / 11c2 - 8d2

=> 7a2 + 3ab / 11a2 - 8b= 7c+ 3cd / 11c2 - 8d2                (đpcm)

13 tháng 6 2015

Đặt \(\frac{a}{b}=\frac{c}{d}=x\)\(\Rightarrow a=bx;c=dx\)

Thay vào vế trái ta có:

               \(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7b^2x^2+3b^2x}{11b^2x^2-8b^2}=\frac{b^2\left(7x^2+3x\right)}{b^2\left(11x^2-8\right)}=\frac{7x^2+3x}{11x^2-8}\)(1)

Thay vào vế trái ta có :

               \(\frac{7c^2+3cd}{11c^2-8d^2}=\frac{7d^2x^2+3d^2x}{11d^2x^2-8d^2}=\frac{d^2\left(7x^2+3x\right)}{d^2\left(11x^2-8\right)}=\frac{7x^2+3x}{11x^2-8}\) (2)

Từ (1) và  (2) => Vế phải bằng vế trái đẳng thức được chứng minh

7 tháng 11 2015

Chứng minh \(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\) ta đi chứng minh \(\frac{7a^2+3ab}{7c^2+3cd}=\frac{11a^2-8b^2}{11c^2-8d^2}\)

Cách 1: Đặt \(\frac{a}{b}=\frac{c}{d}=k\)=> a = bk; c = dk

=> \(\frac{7a^2+3ab}{7c^2+3cd}=\frac{7b^2k^2-8b^2}{7d^2k^2-8d^2}=\frac{\left(7k^2-8\right)b^2}{\left(7k^2-8\right)d^2}=\frac{b^2}{d^2}\)

\(\frac{11a^2-8b^2}{11c^2-8d^2}=\frac{11b^2k^2-8b^2}{11d^2k^2-8d^2}=\frac{\left(11k^2-8\right)b^2}{\left(11k^2-8\right)d^2}=\frac{b^2}{d^2}\)

=> \(\frac{7a^2+3ab}{7c^2+3cd}=\frac{11a^2-8b^2}{11c^2-8d^2}\)=> \(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)

Cách 2:  \(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a}{c}=\frac{b}{d}\)=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\)=> \(\frac{a^2}{c^2}=\frac{7a^2+3ab}{7c^2+3cd}=\frac{11a^2-8b^2}{11c^2-8d^2}\)

Vậy \(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)