Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=x^2-x\sqrt{y}-2x\sqrt{y}+2y\)
\(=x\left(x-\sqrt{y}\right)-2\sqrt{y}\left(x-\sqrt{y}\right)\)
\(=\left(x-2\sqrt{y}\right)\left(x-\sqrt{y}\right)\)
\(a,\)\(A=x^2-3x\sqrt{y}+2y\)
\(=x^2-2x\sqrt{y}-x\sqrt{y}+2y\)
\(=x\left(x-2\sqrt{y}\right)-\sqrt{y}\left(x-2\sqrt{y}\right)\)
\(=\left(x-\sqrt{y}\right)\left(x-2\sqrt{y}\right)\)
\(b,\)Ta có : \(x=\frac{1}{\sqrt{5}-2}=\frac{\sqrt{5}+2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}=\frac{\sqrt{5}+2}{5-4}=\sqrt{5}+2\)
\(y=\frac{1}{9+4\sqrt{5}}=\frac{9-4\sqrt{5}}{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}=\frac{9-4\sqrt{5}}{81-80}=9-4\sqrt{5}=\left(\sqrt{5}-2\right)^2\)
\(\Rightarrow A=\left[\sqrt{5}+2-\sqrt{\left(\sqrt{5}-2\right)^2}\right]\left[\sqrt{5}+2-2\sqrt{\left(\sqrt{5}-2\right)^2}\right]\)
\(=\left(\sqrt{5}+2-\sqrt{5}-2\right)\left(\sqrt{5}+2-2\sqrt{5}+4\right)\)
\(=4\left(6-\sqrt{5}\right)\)
\(=24-4\sqrt{5}\)
Vì với mỗi trận đấu đội thắng được cộng 2 điểm, đội thua không được điểm, 2 đội hoà đều được cộng 1 điểm
=>Sau mỗi trận đấu, tổng số điểm tăng thêm 2 điểm
Vì có n người tham gia=>có n.(n-1)/2 trận đấu=>Có tổng cộng n.(n-1) điểm
Ta sắp xếp n người theo số điểm tăng dần là S1,S2,...,Sn với \(S1\le S2\le...\le Sn;S1+S2+...+Sn=n.\left(n-1\right)\)
Gọi 2 số Sa và S(a+1) có khoảng cách lớn nhất=>\(S1\le...\le Sa\le S\left(a+1\right)\le...\le Sn\)
Đặt \(S1+...+Sa=b\le Sa+...+Sa=a.Sa=>Sa\ge\frac{b}{a}\)(1)
Vì S1+S2+...+Sn=n(n-1)
=>S(a+1)+...+Sn=n(n-1)-(S1+...+Sa)=n(n-1)-b
Do đó: \(S\left(a+1\right)+...+Sn=n\left(n-1\right)-b\ge S\left(a+1\right)+...+S\left(a+1\right)=\left(n-a\right).S\left(a+1\right)\)
\(=>S\left(a+1\right)\le\frac{n\left(n-1\right)-b}{n-a}\)(2)
Lại có: Xét a người S1,...Sa có tất cả: a(a-1)/2 trận đấu lẫn nhau
=>Sau những trận đấu lẫn nhau có tổng số điểm là a(a-1)
Vì a người S1,...Sa còn đấu với n-a người S(a+1),...,Sn
=>Tổng số điểm sẽ lớn hơn hoặc bằng a(a-1)=>\(b\ge a\left(a-1\right)\)(3)
Áp dụng (1),(2) và (3) ta có:
\(S\left(a+1\right)-S\left(a\right)\le\frac{n\left(n-1\right)-b}{n-a}-\frac{b}{a}=\frac{n\left(n-1\right)a-nb}{\left(n-a\right)a}\le\frac{n\left(n-1\right)a-n.a\left(a-1\right)}{\left(n-a\right)a}=\frac{n.a.\left(n-a\right)}{\left(n-a\right).a}=n\)Dấu "=" có thể xảy ra khi đội thấp nhất thua hết được 0 điểm, (n-1) đội còn lại hoà lẫn nhau và thắng đội thấp nhất nên được n điểm
Vậy khoảng cách lớn nhất giữa 2 đội xếp liên tiếp là n (điểm)
em lam bai nay nhung k bet viet can thuc nen mk qui uoc can la c nhe: vi du can7 la c7
a) M = x2 - 2xcy +y - xcy +y = (x -cy)2 - cy(x - cy) = (x - cy)(x-cy -cy) = (x-cy)(x-2cy)
b) chị thay vao rui tinh nhu bai toan don gian
em hoc lop8 chuyen toantin
a: \(A=x^2-x\sqrt{y}-2x\sqrt{y}+2y\)
\(=x\left(x-\sqrt{y}\right)-2\sqrt{y}\left(x-\sqrt{y}\right)\)
\(=\left(x-\sqrt{y}\right)\left(x-2\sqrt{y}\right)\)
b: \(A=\left[\sqrt{5}+2-\left(\sqrt{5}-2\right)\right]\left[\sqrt{5}+2-2\left(\sqrt{5}-2\right)\right]\)
\(=\left(\sqrt{5}+2-\sqrt{5}+2\right)\left(\sqrt{5}+2-2\sqrt{5}+4\right)\)
\(=4\left(6-\sqrt{5}\right)=24-4\sqrt{5}\)
c: =>3x^2+3y^2=39 và 3x^2-2y^2=-6
=>5y^2=45 và x^2=13-y^2
=>y^2=9 và x^2=4
=>\(\left\{{}\begin{matrix}x\in\left\{2;-2\right\}\\y\in\left\{3;-3\right\}\end{matrix}\right.\)
d: \(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{x}=5\\\sqrt{x}-\sqrt{y}=-\dfrac{11}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\\sqrt{y}=1+\dfrac{11}{2}=\dfrac{13}{2}\end{matrix}\right.\)
=>x=1 và y=169/4
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3-3}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{x+1}-\dfrac{2}{y+4}=4-3=1\\-\dfrac{2}{x+1}-\dfrac{5}{y+4}=9-2=7\end{matrix}\right.\)
=>x+1=11/9 và y+4=-11/19
=>x=2/9 và y=-87/19
\(A,ĐKXĐ:x;y\ge0\)
\(A=\sqrt{xy}-2\sqrt{y}-5\sqrt{x}+10\)
\(=\sqrt{y}\left(\sqrt{x}-2\right)-5\left(\sqrt{x}-2\right)\)
\(=\left(\sqrt{x}-2\right)\left(\sqrt{y}-5\right)\)
\(ĐKXĐ:x;y\ge0\)
\(B=a\sqrt{x}+b\sqrt{y}-\sqrt{xy}-ab\)
\(=\left(a\sqrt{x}-\sqrt{xy}\right)+\left(b\sqrt{y}-ab\right)\)
\(=\sqrt{x}\left(a-\sqrt{y}\right)+b\left(\sqrt{y}-a\right)\)
\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)
\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)
\(=\left(a-\sqrt{y}\right)\left(\sqrt{x}-b\right)\)
a) ĐK : y ≥ 0\(B=x^2-3x\sqrt{y}+2y=x^2-x\sqrt{y}-2x\sqrt{y}+2y=x\left(x-\sqrt{y}\right)-2\sqrt{y}\left(x-\sqrt{y}\right)=\left(x-\sqrt{y}\right)\left(1-2\sqrt{y}\right)\)b) Với : \(x=\dfrac{1}{\sqrt{5}-2};y=\dfrac{1}{9+4\sqrt{5}}\)( TM) ; ta có :
\(\left(\dfrac{1}{\sqrt{5}-2}-\sqrt{\dfrac{1}{9+4\sqrt{5}}}\right)\left(1-2\sqrt{\dfrac{1}{9+4\sqrt{5}}}\right)=\left(\dfrac{1}{\sqrt{5}-2}-\sqrt{\dfrac{1}{\left(\sqrt{5}+2\right)^2}}\right)\left(1-2\sqrt{\dfrac{1}{\left(\sqrt{5}+2\right)^2}}\right)=\left(\dfrac{1}{\sqrt{5}-2}-\dfrac{1}{\sqrt{5}+2}\right)\left(1-\dfrac{2}{\sqrt{5}+2}\right)\)Bạn tự quy đồng rồi tính ra nôt nhé.
có cách nhanh hơn đó