Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
a: \(=1-\left(x-y\right)^2\)
\(=\left(1-x+y\right)\left(1+x-y\right)\)
b: \(=a^2-2ab+b^2-c^2+2cd-d^2\)
\(=\left(a-b\right)^2-\left(c-d\right)^2\)
\(=\left(a-b-c+d\right)\left(a-b+c-d\right)\)
d: \(=x^2\left(x^6-64\right)\)
\(=x^2\left(x-2\right)\left(x+2\right)\left(x^2+2x+4\right)\left(x^2-2x+4\right)\)
Bài 1 :
a) \(ĐKXĐ:x\ne1\)
\(A=\left(\frac{3}{x^2-1}+\frac{1}{x+1}\right):\frac{1}{x+1}\)
\(\Leftrightarrow A=\frac{3+x-1}{\left(x-1\right)\left(x+1\right)}\cdot\left(x+1\right)\)
\(\Leftrightarrow A=\frac{x+2}{x-1}\)
b) Thay x = \(\frac{2}{5}\)vào A ta được :
\(A=\frac{\frac{2}{5}+2}{\frac{2}{5}-1}=\frac{\frac{12}{5}}{-\frac{3}{5}}=-4\)
c) Để \(A=\frac{5}{4}\)
\(\Leftrightarrow\frac{x+2}{x-1}=\frac{5}{4}\)
\(\Leftrightarrow4x+8=5x-5\)
\(\Leftrightarrow x=13\)
d) Để \(A>\frac{1}{2}\)
\(\Leftrightarrow\frac{x+2}{x-1}>\frac{1}{2}\)
\(\Leftrightarrow\frac{x+2}{x-1}-\frac{1}{2}>0\)
\(\Leftrightarrow2x+4-x+1>0\)
\(\Leftrightarrow x+5>0\)
\(\Leftrightarrow x>-5\)
Bài 2 :
a) \(ĐKXĐ:\hept{\begin{cases}x\ne-1\\x\ne0\end{cases}}\)
\(A=\frac{x^2}{x^2+x}-\frac{1-x}{x+1}\)
\(A=\frac{x}{x+1}+\frac{x-1}{x+1}\)
\(\Leftrightarrow A=\frac{2x-1}{x+1}\)
b) Để \(A=1\)
\(\Leftrightarrow\frac{2x-1}{x+1}=1\)
\(\Leftrightarrow2x-1=x+1\)
\(\Leftrightarrow x=2\)
b) Để \(A< 2\)
\(\Leftrightarrow\frac{2x-1}{x+1}< 2\)
\(\Leftrightarrow\frac{2x-1}{x+1}-2< 0\)
\(\Leftrightarrow2x-1-2x-1< 0\)
\(\Leftrightarrow-2< 0\)(luôn đúng)
Vậy A < 2 <=> mọi x
a) x(x + 1) - 2x(x - 2) = x2 + x - 2x2 + 4x = -x2 + 5x
b) -3x(x - 1) + (x - 1)(x + 1) = -3x2 + 3x + x2 - 1 = -2x2 + 3x - 1
c) (3x - 2)(3x + 2) - (x - 1)(x + 2) = 9x2 - 4 - x2 - x + 2
= 8x2 - x - 2
a, x(x+1) - 2x(x -2 )
= x2 +x - 2x2 + 4x = -x2 + 5x
b, -3x( x - 1 ) + ( x -1 ) ( x+1 )
= -3x2 + 3x + x2 -1
= -2x2 + 3x -1
c, ( 3x-2 ) ( 3x + 2 ) - ( x -1 ) ( x +2 )
= 9x2 - 4 - ( x2 + 2x -x -2 )
= 9x2 -4 - x2 -2x + x + 2
= 8x2 -x -2
*Sxl
1.
a. \((x+1)(x^2-x+1)-(x-1)(x^2+x+1)\)
\(=x^3 + 1-(x^3-1) = 2 \)
b.
\(\dfrac{2x^2-4x+2}{2x-2}=\dfrac{2\left(x^2-2x+1\right)}{2\left(x-1\right)}=\dfrac{\left(x-1\right)^2}{x-1}=x-1\)
2.
a. \(x^2-4y^2+12y-9=x^2-\left[\left(2y\right)^2-2\cdot2y\cdot3+3^2\right]=x^2-\left(2y-3\right)^2=\left(x-2y+3\right)\left(x+2y-3\right)\)
b.
\(5x^2+3\left(x+y\right)^2-5y^2\)
\(=3\left(x+y\right)^2+5\left(x^2-y^2\right)\)
\(=3\left(x+y\right)^2+5\left(x+y\right)\left(x-y\right)\)
\(=\left(x+y\right)\left[3\left(x+y\right)+5\left(x-y\right)\right]\)
\(=\left(x+y\right)\left(3x+3y+5x-5y\right)\)
\(=\left(x+y\right)\left(8x-2y\right)=2\left(x+y\right)\left(4x-y\right)\)
Bài 1:
a) Ta có: A=x(x-2)-x(x-3)-2x+1
\(=x^2-2x-x^2+3x-2x+1\)
\(=1-x\)(1)
Thay x=2 vào biểu thức (1), ta được:
A(2)=1-2=-1
Vậy: -1 là giá trị của biểu thức A=x(x-2)-x(x-3)-2x+1 khi x=2
b) Ta có: \(B=x\left(x-3\right)-\left(x-1\right)^2+2x-1\)
\(=x^2-3x-\left(x^2-2x+1\right)+2x-1\)
\(=x^2-x-1-x^2+2x-1\)
\(=x-2\)(2)
Thay x=5 vào biểu thức (2), ta được:
B(5)=5-2=3
Vậy: 3 là giá trị của biểu thức \(B=x\left(x-3\right)-\left(x-1\right)^2+2x-1\) khi x=5
c) Ta có: \(C=\left(x+1\right)^2-\left(x-2\right)^2-3x+4\)
\(=x^2+2x+1-\left(x^2-4x+4\right)-3x+4\)
\(=x^2+2x+1-x^2+4x-4-3x+4\)
\(=3x+1\)(3)
Thay x=-3 vào biểu thức (3), ta được:
\(C\left(-3\right)=3\cdot\left(-3\right)+1\)
=-9+1=-8
Vậy: -8 là giá trị của biểu thức \(C=\left(x+1\right)^2-\left(x-2\right)^2-3x+4\) khi x=-3
Đề bài là \(B=\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2-\left(x+2\right)^2}\) hay là \(B=\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2}-\left(x+2\right)^2?\)
\(\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2-\left(x+2\right)^2}\)
viết lại biểu thức
= x + 1 x + 1 x 2 − x + 1 − x 2 + 2 x + 1 x 2 − x + 1 + x 3 + 1 x + 1 x 2 − x + 1
Suy ra phần tử thức của phân thức đã rút gọn là x
Đáp án cần chọn là A