K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2016

Ta có: x là số nguyên và x chia hết cho 5

=> \(ax^3\)chia hết cho 5

\(bx^2\)chia hết cho 5

\(cx\)chia hết cho 5

\(d\)chia hết cho 5

Suy ra cả a,b,c,d đều chia hết cho 5

11 tháng 3 2016

mk chưa học cái này

15 tháng 8 2017

Ta có: \(f\left(x\right)=ax^3+bx^2+cx+d⋮5\forall x\in Z\)

+ Với x=0 ta có \(f\left(0\right)=d⋮5\left(1\right)\)

+ Với x=1 ta có \(f\left(1\right)=a+b+c+d⋮5\left(2\right)\)

+ Với x=-1 ta có \(f\left(-1\right)=-a+b-c+d⋮5\left(3\right)\)

+ Với x=2 ta có \(f\left(2\right)=8a+4b+2c+d⋮5\left(4\right)\)

+ Với x=-2 ta có\(f\left(-2\right)=-8a+4b-2c+d⋮5\left(5\right)\)

Từ (1),(2),(3),(4) và (5) suy ra:

\(\left\{{}\begin{matrix}a+b+c⋮5\\-a+b-c⋮5\end{matrix}\right.\)

\(\Rightarrow\left(a+b+c\right)\left(-a+b-c\right)⋮5\)

\(\Rightarrow\left(a+b+c-a+b-c\right)⋮5\)

\(\Rightarrow2b⋮5\)

\(\Rightarrow b⋮5\) (vì 2 và 5 là 2 số nguyên tố cùng nhau) \(\left(6\right)\)

Từ (1),(2),(4) và (6) \(\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\a+c⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8\left(a+c\right)⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8a+8c⋮5\end{matrix}\right.\)

\(\Rightarrow\left(8a+2c\right)-\left(8a+8c\right)⋮5\Rightarrow6c⋮5\)

\(\Rightarrow c⋮5\) (vì ƯCLN(6,5)=1)

\(\Rightarrow a⋮5\) (vì \(a+c⋮5\) )

Vậy \(a,b,c,d⋮5\)

25 tháng 2 2019

Đề là chia hết cho 5 nha

Do \(f\left(x\right)⋮5\) với \(\forall x\in Z\)

\(\Rightarrow f\left(0\right)⋮5;\forall x\in Z\)

\(\Rightarrow a\cdot0+b\cdot0+c\cdot0+d⋮5\)

\(\Rightarrow d⋮5\)

\(\Rightarrow ax^3+bx^2+cx⋮5\)

\(f\left(1\right)=a+b+c⋮3;f\left(-1\right)=-a+b-c⋮5\)

\(\Rightarrow f\left(1\right)+f\left(-1\right)=2b⋮3\Rightarrow b⋮5\)

\(\Rightarrow a+c⋮5\)

\(P\left(2\right)=8a+4b+2c+d=6a+2\left(a+c\right)+4b+d⋮5\)

\(\Rightarrow6a⋮5\)

\(\Rightarrow a⋮5\Rightarrow c⋮5\)

\(\Rightarrow a;b;c;d⋮5\)