K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2018

có viết đb đúng ko thế

13 tháng 8 2016

a) Để A,B có nghĩa \(\Leftrightarrow\begin{cases}x+2\ge0\\x-3\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge-2\\x\ge3\end{cases}\)\(\Leftrightarrow x\ge3\)

b) Có: A=B

\(\Leftrightarrow\sqrt{x+2}\cdot\sqrt{x-3}=\sqrt{\left(x-2\right)\left(x+3\right)}\)

\(\Leftrightarrow\sqrt{\left(x+2\right)\left(x-3\right)}-\sqrt{\left(x+2\right)\left(x-3\right)}=0\)

\(\Leftrightarrow0x=0\)  (thỏa mãn với mọi x thuộc ĐK)

Vậy với mọi \(x\ge3\) thì A=B

  

13 tháng 8 2016

a) A có nghĩa khi \(\begin{cases}x+2\ge0\\x-3\ge0\end{cases}\) \(\Leftrightarrow x\ge3\)

B có nghĩa khi \(\left(x+2\right)\left(x-3\right)\ge0\) \(\Leftrightarrow\begin{cases}x+2\ge0\\x-3\ge0\end{cases}\) hoặc \(\begin{cases}x+2\le0\\x-3\le0\end{cases}\) 

\(\Leftrightarrow\left[\begin{array}{nghiempt}x\ge3\\x\le-2\end{array}\right.\)

b) Để A = B tức là cả A và B đều có nghĩa , suy ra đkxđ \(x\ge3\)

Vậy với mọi \(x\ge3\) thì A = B

26 tháng 8 2017

A=B òi mà

để A,B có nghĩa thì 

\(\hept{\begin{cases}x+2\ge0\\x-3\ge0\end{cases}}\)

\(\hept{\begin{cases}x\ge-2\\x\ge3\end{cases}\Rightarrow x\ge3}\)

27 tháng 7 2018

chưa bằng nhau đâu vì chưa biết giá trị ở dưới dấu căn là âm hay dương của BT A

29 tháng 11 2015

Bài này trong SBT mà = Sau có giải ko nhỉ ( mình ko dùng nó)

29 tháng 11 2015

a)

A có nghĩa khi  x +2 >/ 0 => x >/ -2

                    và x -3 >/ 0 => x >/ 3

=>x >/ 3

B có nghĩa khi (x+2(x-3) >/ 0  =>  x</ -2 hoặc x >/ 3

b) A = B =>  x >/ 3

a: \(=\dfrac{4x-8\sqrt{x}+8x}{x-4}:\dfrac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{4\sqrt{x}\left(3\sqrt{x}-2\right)}{x-4}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{-\sqrt{x}+3}=\dfrac{-4x\left(3\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

b: \(m\left(\sqrt{x}-3\right)\cdot B>x+1\)

=>\(-4xm\left(3\sqrt{x}-2\right)>\left(\sqrt{x}+2\right)\cdot\left(x+1\right)\)

=>\(-12m\cdot x\sqrt{x}+8xm>x\sqrt{x}+2x+\sqrt{x}+2\)

=>\(x\sqrt{x}\left(-12m-1\right)+x\left(8m-2\right)-\sqrt{x}-2>0\)

Để BPT luôn đúng thì m<-0,3

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Lời giải:

ĐK: $x\geq 0; x\neq 4; x\neq 9$

a) 

\(P=\frac{2\sqrt{x}-9}{(\sqrt{x}-3)(\sqrt{x}-2)}+\frac{(2\sqrt{x}+1)(\sqrt{x}-2)}{(\sqrt{x}-3)(\sqrt{x}-2)}-\frac{(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}-2)}\)

\(=\frac{2\sqrt{x}-9+(2\sqrt{x}+1)(\sqrt{x}-2)-(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}-2)}=\frac{x-\sqrt{x}-2}{(\sqrt{x}-3)(\sqrt{x}-2)}\)

\(=\frac{(\sqrt{x}-2)(\sqrt{x}+1)}{(\sqrt{x}-3)(\sqrt{x}-2)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

b) \(P=\frac{\sqrt{x}+1}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Với $x$ nguyên, để $P$ nguyên thì $\sqrt{x}-3$ phải là ước nguyên của $4$

Mà $\sqrt{x}-3\geq -3$ nên:

$\Rightarrow \sqrt{x}-3\in\left\{\pm 1;\pm 2;4\right\}$

$\Rightarrow x\in \left\{4;16;1;25;49\right\}$ (đều thỏa mãn.