Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne0\)
\(y=\sqrt{\frac{x^4-6x^2+9+12x^2}{x^2}}+\sqrt{x^2+4x+4-8x}\)
\(y=\sqrt{\frac{x^4+6x^2+9}{x^2}}+\sqrt{x^2-4x+4}\)
\(y=\sqrt{\frac{\left(x^2+3\right)^2}{x^2}}+\sqrt{\left(x-2\right)^2}\)
\(y=\left|\frac{x^2+3}{x}\right|+\left|x-2\right|\)
Ta có bảng xét dấu:
Với \(x< 0,y=\frac{x^2+3}{-x}+2-x=\frac{2x^2-2x+3}{-x}\)
Với \(0< x\le2,y=\frac{x^2+3}{x}+2-x=\frac{2x+3}{x}\)
Với \(x>2,y=\frac{x^2+3}{x}+x-2=\frac{2x^2-2x+3}{x}\)
- Ta thấy ngay, với cả ba trường hợp thì \(y\in Z\Leftrightarrow x\in U\left(3\right)=\left\{-3;-1;1;3\right\}\)
để A thuộc Z => x^2 - 3 chia hết cho x (chỉ cần bỏ căn là sẽ hiểu )
\(a.A=\sqrt{\dfrac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}=\sqrt{\dfrac{x^4+6x^2+9}{x^2}}+\sqrt{x^2-4x+4}=\left|\dfrac{x^2+3}{x}\right|+\left|x-2\right|=\left|x+\dfrac{3}{x}\right|+\left|x-2\right|\left(x\ne0\right)\)
\(b.\) Để : \(A\in Z\Leftrightarrow\left(x+\dfrac{3}{x}\right)\in Z\Leftrightarrow x\in\left\{\pm1;\pm3\right\}\)
Điều kiện \(x\ne0\)
\(A=\sqrt{\frac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\)
\(=\sqrt{\frac{x^4+6x^2+9}{x^2}}+\sqrt{x^2-4x+4}\)
\(=\left|\frac{x^2+3}{x}\right|+\left|x-2\right|\)
\(=\left|x+\frac{3}{x}\right|+\left|x-2\right|\)
Để A nguyên thì x phải là ước nguyên của 3 hay \(x=-3;-1;1;3\)