Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=15cm
b: Xét ΔABM có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔABM cân tại B
c: Xét tứ giác ABNC có
K là trung điểm của BC
K là trung điểm của AN
Do đó: ABNC là hình bình hành
Suy ra: CN=AB
mà AB=BM
nên CN=BM
a: BC=15cm
b: Xét ΔCDB có
CA là đường cao
CA là đường trung tuyến
Do đó:ΔCDB cân tại C
`a)` Áp dụng định lý pytago ta có :
`AB^2+AC^2=BC^2`
hay `9^2+12^2=BC^2`
`=>BC^2=225`
`=>BC=15(cm)`
`b)` Xét `ΔABC` và `ΔADC` ta có :
`AC` chung
`\hat{BAC}=90^o`
`\hat{DAC}=90^o`
`=>ΔABC=ΔADC` (c.g.c)
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>góc BED=góc BAD=90 độ
=>DE vuông góc bC
=>DE//AH
c: góc EDC+góc C=90 độ
góc ABC+góc C=90 độ
=>góc EDC=góc ABC
d: Xét ΔDAK vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADK=góc EDC
=>ΔDAK=ΔDEC
=>DK=DC và AK=EC
BA+AK=BK
BE+EC=BC
mà BA=BE và AK=EC
nên BK=BC
mà DK=DC
nên BD là trung trực của KC
=>B,D,M thẳng hàng
a) Xét △AHB và △AHC có:
AB = AC (gt)
BH = HC (gt)
AH Chung
=>△AHB = △AHC (c.c.c)
Do đó góc A1 = góc A2 (2 góc tương ứng)
Mà H là trung điểm của BC => AH vuông góc với BC
b) Xét △AHM và △AHN có:
Góc A1 = Góc A2 (cmt)
Góc M = Góc N (gt)
AH Chung
=> △AHM = △AHN (Cạnh huyền - Góc nhọn)
c) Vì △AHM = △AHN (cmt)
=> AM = AN (2 cạnh tương ứng)
Vì I là giao điểm của MH và AC, K là giao điểm của NH và AB.
=>AK = AI
Do đó: △AIK là tam giác cân (Do có 2 cạnh bằng nhau)
a: \(\widehat{AIK}=180^0-\widehat{HAC}-\widehat{AKB}\)
\(=90^0-\widehat{HAC}+90^0-\widehat{AKB}\)
\(=\widehat{ABK}+\widehat{C}=\widehat{KBC}+\widehat{BAH}\)
b: \(\widehat{AKI}=90^0-\widehat{ABK}\)
\(\widehat{AIK}=\widehat{BIH}=90^0-\widehat{KBC}\)
mà \(\widehat{ABK}=\widehat{KBC}\)
nên \(\widehat{AKI}=\widehat{AIK}\)
a.Ta có \(Δ A S P\) vuông tại S
\(→ A P ^2 = S A ^2 + S P ^2 = 225\)
\(→ A P = 15 \)
b.Xét\(Δ K A H , Δ G P H\)có:
\(ˆ A K H = ˆ P G H ( = 90 ^o )\)
\(H A = H P\) vì H là trung điểm AP
\(ˆ K H A = ˆ P H G\)
\(→ Δ K A H ∼ Δ G P H\)(cạnh huyền-góc nhọn)
c.Từ câu a\(→ H K = H G → H\) là trung điểm KG
Ta có:
\(K H ^2 = A H ^2 − A K ^2\)
\(→ 4 K H ^2 = 4 A H ^2 − 4 A K ^2\)
\(→ ( 2 K H ) ^2 = ( 2 A H ) ^2 − 4 K A ^2\)
\(→ K G ^2 = A P ^2 − 4 K A ^2\)
HT