Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Để \(A\cap B=\varnothing\) thì \(\begin{cases}m+1< n\\m>n+2\end{cases}\)
\(\Rightarrow n+2< m< n-1\)
b/ Để \(A\cap B\ne\varnothing\) thì \(n+2\ge m\ge n-1\)
a, Tập hợp con của A là{1} ,{2}, A,∅
b, Để M ⊂A và M⊂B
thì M={1}
c,Vì A⊂N và B⊂N
Nên N={1;2;4}
Để A ∪ B = A thì:
m - 5 < 2 và m + 1 ≥ 6
*) m - 5 < 2
⇔ m < 2 + 5
⇔ m < 7
*) m + 1 ≥ 6
⇔ m ≥ 6 - 1
⇔ m ≥ 5
Vậy 5 m < 7 thì A ∪ B = A
Để B là tập con của A thì
\(\left\{{}\begin{matrix}m-1< 4\\-2< 2m+2\\m-1>=-2\\4< 2m+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< 5\\-2m< 4\\m>=-1\\2m+2>4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 5\\m>-2\\m>=-1\\m>1\end{matrix}\right.\)
=>\(1< m< 5\)
Để A giao B bằng rỗng thì
-vô cực>+vô cực(vô lý) hoặc m-1<2
=>m-1<2
=>m<3
a: Vì (P) đi qua A(0;1); B(1;2); C(3;-1) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot0^2+b\cdot0+c=1\\a\cdot1^2+b\cdot1+c=2\\a\cdot3^2+b\cdot3+c=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=1\\a+b+1=2\\9a+3b+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=1\\a+b=1\\9a+3b=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=1\\9a+9b=9\\9a+3b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=1\\6b=11\\a+b=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=1\\b=\dfrac{11}{6}\\a=1-\dfrac{11}{6}=-\dfrac{5}{6}\end{matrix}\right.\)
b: Vì (P) đi qua M(0;-1); N(1;0) và P(2;3) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot0^2+b\cdot0+c=-1\\a\cdot1^2+b\cdot1+c=0\\a\cdot2^2+b\cdot2+c=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=-1\\a+b-1=0\\4a+2b-1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\a+b=1\\4a+2b=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=-1\\a+b=1\\2a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\-a=-1\\a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\a=1\\b=0\end{matrix}\right.\)
c: Vì (P) đi qua M(1;-2); N(0;4); P(2;1) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot1^2+b\cdot1+c=-2\\a\cdot0^2+b\cdot0+c=4\\a\cdot2^2+b\cdot2+c=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a+b+c=-2\\c=4\\4a+2b+c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a+b=-2-c=-6\\4a+2b=1-4=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=4\\4a+4b=-24\\4a+2b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\2b=-21\\a+b=-6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=4\\b=-\dfrac{21}{2}\\a=-6-b=-6+\dfrac{21}{2}=\dfrac{9}{2}\end{matrix}\right.\)
d: Hoành độ đỉnh là 2 nên -b/2a=2
=>b=-4a(1)
Thay x=3 và y=1 vào (P), ta được:
\(a\cdot3^2+b\cdot3+c=1\)
=>\(9a+3b+c=1\left(2\right)\)
Thay x=-1 và y=2 vào (P), ta được:
\(a\cdot\left(-1\right)^2+b\left(-1\right)+c=2\)
=>a-b+c=2(3)
Từ (1),(2),(3), ta có hệ phương trình:
\(\left\{{}\begin{matrix}b=-4a\\9a+3b+c=1\\a-b+c=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-4a\\9a-12a+c=1\\a+4a+c=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=-4a\\-3a+c=1\\5a+c=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-4a\\-8a=-1\\5a+c=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=\dfrac{1}{8}\\b=-4\cdot\dfrac{1}{8}=-\dfrac{1}{2}\\c=2-5a=2-\dfrac{5}{8}=\dfrac{11}{8}\end{matrix}\right.\)
a.
\(A\cap B=\varnothing\Leftrightarrow\left[{}\begin{matrix}m+4< -5\\m>11\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m< -9\\m>11\end{matrix}\right.\)
b.
\(A\cap B\ne\varnothing\Leftrightarrow-9\le m\le11\)
\(A\cap B=\varnothing\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge3\\m+1< 0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge3\\m< -1\end{matrix}\right.\)
Ta có nên làm bánh mì sữa không, ngồi trong phòng mọc nấm mất... Nhưng mà hong có men, haizz, lười quá