Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Trần Khởi My - Toán lớp 7 - Học toán với OnlineMath
Tham khảo nhé
biết đường mà cảm ơn đi, hahaha:
theo đề bài x và y đã cho suy ra: a=x.m và b=y.m. Nên ta thay vào z sẽ có a+b/2m = x.m+y.m=2m
x=a/m suy ra x cũng bằng 2a/2m nên bằng 2xm/2m...Mà x.m+y.m (dòng trên) lớn hơn 2xm do y>x nên ta được z>x
Tương tự với y
Vậy x < z < y (đpcm) haha ♥
ta có: x < y hay a/m < b/m => a < b
so sánh x,y,z ta chuyển chúng cùng mẫu: 2m
x = a/m = 2a / 2m và y = b/m = 2b / 2m và Z = (a + b) / 2m
* Mà a < b :
=> a + a < b + a
hay 2a < b + a
=> x < Z (1)
* mà a < b:
=> a + b < b + b
hay a + b < 2b
=> Z < y (2)
từ (1) và (2) => nếu chọn Z = (a + b) / 2m thì ta có x < Z < y
\(x< y\)
\(\Rightarrow\frac{a}{m}< \frac{b}{m};m>0\)
\(\Rightarrow a< b\)
\(\Rightarrow\frac{a+a}{m}< \frac{a+b}{m}\)
\(\Rightarrow\frac{a+a}{2m}< \frac{a+b}{2m}\)
\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}\)
\(\Rightarrow\frac{a}{m}< \frac{a+b}{2m}\)
\(\Rightarrow x< z\left(1\right)\)
Tương tự lại có :
\(\frac{a+b}{m}< \frac{b+b}{m}\)
\(\Rightarrow\frac{a+b}{2m}< \frac{b+b}{2m}\)
\(\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\)
\(\Rightarrow\frac{a+b}{2m}< \frac{b}{m}\)
\(\Rightarrow z< y\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow x< z< y\)
Vậy \(x< z< y.\)
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
Ta có x = \(\frac{2a}{2m}\)< \(\frac{a+b}{2m}\)= z
y = \(\frac{2b}{2m}\)> \(\frac{a+b}{2m}\)= z
Do x < y => a/m < b/m
=> a/m + a/m < a/m + b/m < b/m + b/m
=> 2x < a+b/m < 2y
=> x < a+b/m : 2 < 2y
=> x < a+b/m . 1/2 < y
=> x < a+b/2m < y
Chứng tỏ ...
Ta có: x<y =>a/m<b/m =>a/m+b/m<(a+b)/2m
=> a/m+b+m<b/m+b/m =>(a+b)/2m<b/m =>z<y(1)
Lại có x<y =>a/m<b/m =>(a+a)/m<b/m+a/m
=>2a/m<(b+a)/m =>a/m<(a+b)/2m
=>x<z(2).Từ (1)và(2)=>điều phải chứng minh
Ta có: \(\frac{a}{m}< \frac{b}{m}\)
Mà m>0 => a<b
Do đó: \(\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)
hay \(\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)