Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Với a, b ∈ Z, b> 0
- Khi a , b cùng dấu thì \(\frac{a}{b}\) > 0
- Khi a,b khác dấu thì \(\frac{a}{b}\)< 0
Tổng quát: Số hữu tỉ \(\frac{a}{b}\) ( a,b ∈ Z, b # 0) dương nếu a,b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
Ta có:x<y
=>x+x<y+x
\(\Rightarrow\frac{2a}{m}< \frac{a+b}{m}\)
=>2a<a+b
Mà \(x=\frac{a}{m}=\frac{2a}{2m}\)
\(y=\frac{b}{m}=\frac{2b}{2m}\)
Theo giả thuyết trên:
=>2a<a+b<2b
\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)
\(\Rightarrow x< z< y\left(DPCM\right)\)
x=a/m=2a/2m y=b/m=2b/2m
x<y nên a<b
=>2a<a+b và =>a+b<2b
=>2a/2m < a+b/2m < 2b/2m
=>x<y<z ( đpcm)
do x<y =>a/m<b/m=>a<b
ta có:
x=a/m=2a/2m
y=b/m=2b/2m
do a<b=>a+a/2m<a+b/2m
<=>2a/2m<a+b/2m
<=>x<z (1)
do a<b=>a+b/2m<b+b/2m
<=>a+b/2m<2b/2m
<=>z<y (2)
từ (1) và (2)=>ĐPCM
Vì x < y (a/m < b/m) và m > 0 nên a < b .
x = a / m = 2a / 2m ; y = b / m = 2b / 2m ; z = a + b / 2m
a < b => a + a < a + b < b + b <=> 2a < a + b < 2b => 2a / 2m < a + b / 2m < 2b / 2m => x < z < y
Ta có x=\(\frac{a}{m}=\frac{2a}{2m}\) , y=\(\frac{b}{m}=\frac{2b}{2m}\)
Vì x<y nên a<b
Có a<b =>2a<a+b (1)
Có a<b =>a+b<2b (2)
Từ (1) và (2) =>2a<a+b<2b =>\(\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)
=>x<y<z ( đpcm)
\(\frac{a}{m}=\frac{2a}{2m};\frac{b}{m}=\frac{2b}{2m}\)
Vì \(\frac{a}{m}