Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : M=2.(a^3 +b^3) -3.(a^2 + b^2)
<=>M=2.(a+b)(a^2 -ab +b^2) - 3(a^2 +3b^2)
<=>M=2(a^2 -ab +b^2) -3(a^2 +b^2) vì a+b=1(gt)
<=>M=-(a^2 +b^2 +2ab)
<=>M=-(a+b)^2
<=>M=-1 (vì a+b=1)
Thực ra theo em nghĩ bài này là dùng UCT!
Dự đoán đẳng thức xảy ra khi \(a=b=c=2\)
Chọn m, n để \(a^3\ge ma^2+n\). Ta thử thay a = 2 vào: \(8=4m+n\Rightarrow n=8-4m\)
Vậy ta chọn m sao cho \(a^3\ge m\left(a-2\right)\left(a+2\right)+8\)
\(\Leftrightarrow\left(a-2\right)\left(a^2+2a+4\right)=\left(a-2\right)m\left(a+2\right)\)
\(\Leftrightarrow\left(a-2\right)\left(a^2+2a+4-m\left(a+2\right)\right)=0\)
Chọn m để : \(a^2+2a+4=m\left(a+2\right)\)
Thay a = 2 vào:\(12=m.4\Rightarrow m=3\Rightarrow n=8-4m=-4\). Vậy BĐT phụ cần tìm là:
\(a^3\ge3a^2-4\Leftrightarrow\left(a+1\right)\left(a-2\right)^2\ge0\)
Khúc sau đơn giản rồi:D
Nè bạn :)
Ta có : \(2ab+2ac\ge4a\sqrt{bc}\) (Cauchy_)
\(\Rightarrow a^2+2ab+2ac+4bc\ge a^2+4a\sqrt{bc}+4bc\)
\(\Rightarrow a^2+2ab+2ac+4bc\ge\left(a+2\sqrt{bc}\right)^2\)
\(\Rightarrow\sqrt{\left(a+2b\right)\left(a+2c\right)}\ge a+2\sqrt{bc}\)\(\left(1\right)\)
Tương tự : \(\sqrt{\left(b+2a\right)\left(b+2c\right)}\ge b+2\sqrt{ac}\)\(\left(2\right)\)
\(\sqrt{\left(c+2a\right)\left(c+2b\right)}\ge c+2\sqrt{ab}\)\(\left(3\right)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\)\(\Rightarrow\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\ge3\)
\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\sqrt{3}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Thay vào biểu thức M ta được M = \(\frac{\sqrt{3}}{3}\)
.
\(A\cap B\ne\varnothing\)khi \(\hept{\begin{cases}b\le a+2\\b+1\ge a\end{cases}\Leftrightarrow\hept{\begin{cases}b-a\le2\\b-a\ge-1\end{cases}}}\Leftrightarrow-1\le b-a\le2.\)
a a+2 b+1 b
Ta tìm điều kiện để \(A\cap B=\varnothing\).
Có hai trường hợp :
TH1: \(a+2< b.\)
TH2: \(b+1< a.\)
Để hai trường hợp đều không xảy ra thì \(\hept{\begin{cases}a+2\ge b\\a\le b+1\end{cases}\Rightarrow\hept{\begin{cases}a\ge b-2\\a\le b+1\end{cases}\Rightarrow}b-2\le a\le b+1.}\)
\(\left(a+b\right)^4=\left(a+b\right)^2\left(a+b\right)^2\)
\(=\left(a^2+2ab+b^2\right)\left(a^2+2ab+b^2\right)\)
Lm nốt
Em nghĩ dùng tam giác Bát - cam :v
\(\frac{\frac{1\rightarrow\text{Bậc 0}}{\left|1\right|1|\rightarrow\text{Bậc 1 }}}{\frac{\left|1\right|2\left|1\right|\rightarrow\text{Bậc 2}}{\frac{|1\left|3\right|3\left|1\right|\rightarrow\text{Bậc 3}}{\left|1\right|4\left|6\right|4\left|1\right|\rightarrow\text{Bậc 4}}}}\)(em vẽ hình hơi xấu:v). Từ tam giác bát cam ta có hằng đẳng thức:
\(\left(a+b\right)^4=a^4+4a^3b+6a^2b^2+4ab^2+b^4\)
Còn (a-b)4 thì nói ra hơi khó hiểu, đành khai triển thôi:v, mọi người nói giúp em với ạ.
Đáp án C
giải
Chuyển vế sau đó bình phương lên
\(\sqrt{x+4}=2-\sqrt{x-1}\)
\(\Leftrightarrow\left(\sqrt{x+4}\right)^2=\left(2-\sqrt{x-1}\right)^2\)
Khai triển cái này ra xog sẽ được
\(\sqrt{x-1}=-\frac{1}{4}\) ( Vô lí)
Suy ra ko tồn tại giá trị x thỏa mãn
Hay tập nghiệm là rỗng
1) \(\frac{9}{x^2}+\frac{2x}{\sqrt{2x^2+9}}=1\left(ĐK:x\ne0\right)\)
Đặt: \(\sqrt{2x^2+9}=a\left(a\ge0\right)\)
\(\Leftrightarrow2x^2+9=a^2\Leftrightarrow9=a^2-2a^2\)
Khi đó pt đã cgo trở rhanhf:
\(\frac{a^2-2x^2}{x^2}+\frac{2x}{a}=1\)
\(\Leftrightarrow\left(\frac{a}{x}\right)^2-2+\frac{2x}{a}-1=0\)
\(\Leftrightarrow\left(\frac{a}{x}\right)^2+\frac{2x}{a}-3=0\) (*)
Đặt: \(\frac{a}{x}=b\) khi đó (*) trở thành:
\(b^2+\frac{2}{b}-3=0\)
\(\Leftrightarrow b^3+2-3b=0\)
\(\Leftrightarrow\left(b^3-b\right)-\left(2b-2\right)=0\)
\(\Leftrightarrow b\left(b-1\right)\left(b+1\right)-2\left(b-1\right)=0\)
\(\Leftrightarrow\left(b-1\right)\left(b^2+b-2\right)=0\)
\(\Leftrightarrow\left(b-1\right)^2\left(b+2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}b-1=0\\b+2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}b=1\\b=-2\end{array}\right.\)
Với: \(b=1\) ta có:
\(\frac{a}{x}=1\Leftrightarrow a=x\Leftrightarrow\sqrt{2x^2+9}=x\Leftrightarrow2x^2+9=x^2\Leftrightarrow x^2+9=0\left(loai\right)\)
Với: \(b=-2\) ta có:
\(\frac{a}{x}=-2\)
\(\Leftrightarrow a=-2x\)
\(\Leftrightarrow\sqrt{2x^2+9}=-2x\)
\(\Leftrightarrow2x^2+9=4x^2\)
\(\Leftrightarrow2x^2=9\)
\(\Leftrightarrow x^2=\frac{9}{2}\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{3}{\sqrt{2}}\\x=-\frac{3}{\sqrt{2}}\end{array}\right.\)
Thử lại ta thấy: \(x=\frac{3}{\sqrt{2}}\left(ktm\right);x=-\frac{3}{\sqrt{x}}\left(tm\right)\)
Vaayk pt đã cho có nhgieemj là \(x=-\frac{3}{\sqrt{2}}\)
Do tập A có 3 phần tử, theo nguyên lý Dirichlet thì hai tập con bất kì có nhiều hơn 1 phần tử của A đều có chung ít nhất 1 phần tử hay giao của chúng khác rỗng
\(\Rightarrow\) Các tập con của A có giao bằng rỗng khi và chỉ khi chúng có không nhiều hơn 1 phần tử
\(\Rightarrow\) Các tập đó là: \(\varnothing;\left\{a\right\};\left\{b\right\};\left\{c\right\}\)
Có \(C_4^2=6\) cặp thỏa mãn
Thầy dạy mk bảo là 14 cơNguyễn Việt Lâm