\(A=\left(2^9\right)^{1945}\)và \(S\left(A\right)=a;S\left(a\rig...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

Vì : \(2^3< 10\Rightarrow A< 10^{5835}\)

Suy ra \(a\le9\times5835=52515\). Suy ra \(b\le5+4\times9=41\)

Do đó , \(c\le4+9=13\)

Mặt khác \(A\equiv a\equiv b\equiv c\left(mod9\right)\). Vì \(2^3\equiv\left(-1\right)\left(mod9\right)\) nên \(A\equiv\left(-1\right)\left(mod9\right)\)

Vậy : \(c\equiv8\left(mod9\right)\) hay \(c=8\).

10 tháng 3 2020

Vì \(2^3\equiv-1\left(mod9\right)\Rightarrow\left(2^3\right)^{3\cdot1945}\equiv-1\left(mod9\right)\)

Vậy \(\left(2^9\right)^{1945}\equiv9\left(mod9\right)\)

Kí hiệu S(m) là tổng các chữ số m

=> S(a); S(b) chia cho 9 cũng dư 8

Có: \(2^{13}=8192< 10^4\Rightarrow2^{130}< 10^{40}\)nên \(\hept{\begin{cases}2^{17420}< 10^{40\cdot134}\\\left(2^{13}\right)^6< 10^{24}\\2^7< 10^3\end{cases}}\)

Vậy \(\left(2^9\right)^{1945}=2^{17420+13\cdot6+7}< 10^{5391}\Rightarrow\left(2^9\right)^{5391}\)có không quá 5391 chữ số. Lại có:

\(a=S\left(\left(2^9\right)^{1945}\right)\le5391\cdot9=48519\)

\(b=S\left(a\right)\le3+9+9+9+9=39\)

\(c=S\left(b\right)\le12\)

\(\Rightarrow S\left(b\right)=8\)hay c=8

Vậy c=8

2 tháng 2 2020

2. Ta có: n + S ( n ) + S ( S (n) ) = 60

Có: n \(\ge\)S ( n ) \(\ge\)S ( S (n) ) 

=> n + n + n  \(\ge\)n + S ( n ) + S ( S (n) ) \(\ge\)60

=> 3n \(\ge\)60

=> n \(\ge\)20

=> 20 \(\le\)\(\le\)60 

Đặt: n = \(\overline{ab}\)

=> \(2\le a\le6\)

và \(2+0\le a+b\le5+9\)

=> \(2\le a+b\le14\)

a + b234567891011121314
\(\overline{ab}\)56545250484644424047454341
 loạiloạiloạitmloạiloạitmloạiloạitmloạiloạiloại

Vậy n = 50; n = 44 hoặc n = 47

2 tháng 2 2020

1. Ta có: a + 3c = 2016 ; a + 2b = 2017

=> a + 3c + a + 2b = 2016 + 2017

=> 2a + 2b + 2c + c = 4033

=> 2 ( a + b + c ) = 4033 - c 

mà a, b, c không âm 

=> c \(\ge\)0

Để P = a + b + c  đạt giá trị lớn nhất 

<=> 2 ( a + b + c ) đạt giá trị lớn nhất

<=> 4033 - c đạt giá trị lớn nhất 

<=> c đạt giá trị bé nhất

=> c = 0

=> a = 2016 ; b = ( 2017 - 2016 ) : 2 = 1/2

Vậy max P = 0 + 2016 + 1/2 = 4033/2

23 tháng 12 2018

Bạn xem bài làm ở đây:

https://olm.vn/hoi-dap/detail/40718880788.html

Học tốt

26 tháng 8 2021

3. a) \(đk:x\ne1;x\ne-2\)

Ta có: \(A=\frac{3x-3+2}{x-1}=\frac{3\left(x-1\right)+2}{x-1}=3+\frac{2}{x-1}\)

Để A là số nguyên thì x là số nguyên và x-1 là ước của 2 . Ta có bảng:

x-11-12-2
x203-1

Lại có: \(B=\frac{2x^2+4x-3x-6+5}{x+2}=\frac{2x\left(x+2\right)-3\left(x+2\right)+5}{x+2}=2x-3+\frac{5}{x+2}\)

Để B là số nguyên thì x là số nguyên và x+2 là ước của 5. Ta có bảng:

x+21-15-5
x-1-33-7

b) Để A và B cùng nguyên thì \(x\in\left\{-1;3\right\}\)

28 tháng 1 2018

1,

Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)

\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)

\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)

Dấu "=" xảy ra khi x = 0, y = 13

Vậy Pmin = 6/7 khi x = 0, y = 13

2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)

Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6

28 tháng 1 2018

3,

Ta có: \(10\le n\le99\)

\(\Rightarrow20\le2n\le198\)

\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)

\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)

\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)

Ta thấy chỉ có 36 là số chính phương 

Vậy n = 32

4,

ÁP dụng TCDTSBN ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)

\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)

\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)

Vậy B = 8 

14 tháng 8 2019

a) \(\left(b+1\right)+b\left(a+1\right)=\left(a+1\right)\left(b+1\right)\)

\(\Leftrightarrow ab+2b+1=ab+a+b+1\)

\(\Leftrightarrow b=a\)

Câu a sai đề, hình như pk là \(\frac{a}{b}=1\)

14 tháng 8 2019

b) \(2\left(a+1\right)\left(a+b\right)=\left(a+b\right)\left(a+b+2\right)\)

\(\Leftrightarrow\left(2a+2\right)\left(a+b\right)=\left(a+b\right)\left(a+b+2\right)\)

\(\Leftrightarrow\left(2a+2\right)\left(a+b\right)-\left(a+b\right)\left(a+b+2\right)=0\)

\(\Leftrightarrow\left(2a+2-a-b-2\right)\left(a+b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=0\)

\(\Leftrightarrow a^2-b^2=0\)

Hình như đề cx sai

12 tháng 3 2018

\(\left|a-b\right|\ge c\)

\(\Rightarrow S=\left|a-b\right|-c-a-b+c\)

\(S=\left|a-b\right|-a-b\)

+)Xét \(a\ge b\)

\(\Rightarrow S=a-b-a-b\)

\(S=-2b⋮2\left(1\right)\)

+)Xét \(a< b\)

\(\Rightarrow S=b-a-a-b\)

\(S=-2a⋮2\left(2\right)\)

Từ (1) và (2) \(\Rightarrowđpcm\)

2 tháng 2 2019

giúp mình đi làm ơn đó.mình cần rất gấp:) :) :)

3 tháng 2 2019

mk lm rùi nên k cần giúp nx đâu

20 tháng 12 2017

a) \(\left(-2\right)^{240}\)\(\left(-3\right)^{160}\)

Ta có: \(\left(-2\right)^{240}=[\left(-2\right)^3]^{80}=\left(-8\right)^{80}\)

\(\left(-3\right)^{160}=\left[\left(-3\right)^2\right]^{80}=9^{80}\)

Mà: \(\left(-8\right)^{80}< 9^{80}\) (vì -8 < 9)

Nên: \(\left(-2\right)^{240}< \left(-3\right)^{160}\)

22 tháng 11 2019

a) \(\left(-2\right)^{210}và\left(-3\right)^{160}\)

Ta có:\(\left(-2\right)^{240}\) \(=\) \(\left[\left(-2\right)^3\right]^{80}\) \(=\) \(\left(-8\right)^{80}\)

\(\left(-3\right)^{160}\) \(=\) \(\left[\left(-3\right)^2\right]^{80}\) \(=\) \(9^{80}\)

Mà:\(\left(-8\right)^{80}\) \(< \) \(9^{80}\) (vì -8 < 9)

Nên:\(\left(-2\right)^{240}\) < \(\left(-3\right)^{160}\)