\(a\in\left[0;1\right].CM:a+b^2+c^2-ab-bc-ca\le1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a,b,c∈[0,1]⇒b≥b2;c≥c3

Ta có:

a,b,c∈[0,1]⇒(1−a)(1−b)(1−c)≥0

⇔1−a−b−c+ab+bc+ca−abc≥0

⇔a+b+c−ab−bc−ca+abc≤1

⇒a+b2+c3−ab−bc−ca≤1

⇒đpcm

Dấu "=" xảy ra khi trong a,b,ccó 1 số bằng 1, 1 số bằng 0, số còn lại là 1 hoặc 0

12 tháng 5 2017

Vì \(a,b,c\le1\) nên ta có:

\(\hept{\begin{cases}1-a\ge0\\1-b\ge0\\1-c\ge0\end{cases}}\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)

\(\Leftrightarrow1-a-b-c+ab+bc+ca-abc\ge0\)

\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\)

Mà ta có: \(\hept{\begin{cases}b^2\le b\\c^3\le c\\1-abc\le1\end{cases}}\)

Từ đó suy ra:

\(a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\le1-abc\le1\)

Ta có ĐPCM

NV
13 tháng 6 2020

2.

\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)

\(P=\frac{3x}{2}+\frac{6}{x}+\frac{y}{2}+\frac{8}{y}+\frac{3x}{2}+\frac{3y}{2}\)

\(P=\left(\frac{3x}{2}+\frac{6}{x}\right)+\left(\frac{y}{2}+\frac{8}{y}\right)+\frac{3}{2}\left(x+y\right)\)

\(P\ge2\sqrt{\frac{18x}{2x}}+2\sqrt{\frac{8y}{2y}}+\frac{3}{2}.6=19\)

\(P_{min}=19\) khi \(\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

NV
13 tháng 6 2020

1.

Do \(0\le a;b;c\le1\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)

\(\Leftrightarrow1-abc-a-b-c+ab+bc+ca\ge0\)

\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\le1\)

Mặt khác \(0\le a;b;c\le1\Rightarrow\left\{{}\begin{matrix}b^2\le b\\c^3\le c\end{matrix}\right.\)

\(\Rightarrow a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\le1\) (đpcm)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị

Y
22 tháng 5 2019

không phải nha!

là a,b,c ở trong khoảng từ 0 đến 1

Ở trong bài này thì dấu "=" xảy ra

khi (1-a)(1-b)(1-c) = 0 thì 1 trog 3 số bằng 1

abc = 0 thì có 1 số bằng 0 ( giả sử a = 0, b = 1 )

thay vào BĐT cuối thì ta đc :

\(1+c^3-c=1\)

\(\Rightarrow c\left(c+1\right)\left(c-1\right)=0\Rightarrow\left[{}\begin{matrix}c=0\\c=-1\\c=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}c=1\\c=0\end{matrix}\right.\)

Như vậy trog 3 số a,b,c có 2 số bằng 0, 1 số bằng 1 hoặc 1 số bằng 0, 2 số bằng 1.

1 tháng 2 2018

Akai HarumaVõ Đông Anh TuấnNguyễn Thanh Hằng giúp mk vs! Cảm ơn trc nha

3 tháng 1 2022

TL :

Bất đẳng thức sai, chẳng hạn với \(a=b=10^{-4};c=0,5-a-b.\).

HT

3 tháng 1 2022

Thưa anh, nếu \(a=b=10^{-4}\) và \(c=0,5-a-b=0,5-2.10^{-4}\),em bấm máy thì ngay cả khi chỉ có một cái 

\(\frac{1}{ab\left(a+b\right)}\)nó đã bằng \(5.10^{11}\)lớn hơn rất nhiều so với \(\frac{87}{2}\), BĐT vẫn đúng chứ ạ?

\(a^2+b^2+c^2=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2=a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\)

\(\Leftrightarrow a^2+b^2+c^2-2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=4\left(ab+bc+ac\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2=2^2\left(ab+bc+ac\right)\)

\(\Leftrightarrow\left(\frac{a+b+c}{2}\right)^2=ab+bc+ac\)

Suy ra ab+bc+ca là số chính phương

2 tháng 5 2017

Câu 3/ \(\sqrt{\left(x+z\right)^2+\left(y-t\right)^2}+\sqrt{\left(x-z\right)^2+\left(y+t\right)^2}\)

\(\le\sqrt{1+2xz-2yt}+\sqrt{1-2xz+2yt}\)

\(\le\dfrac{1+1+2xz-2yt}{2}+\dfrac{1+1-2xz+2yt}{2}=1+1=2\)

2 tháng 5 2017

Đăng nhiều thế???