\(\in\left[0;1\right]\). Hãy chứng minh rằng : \(a^1+b^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2017

Vì \(a,b,c\le1\) nên ta có:

\(\hept{\begin{cases}1-a\ge0\\1-b\ge0\\1-c\ge0\end{cases}}\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)

\(\Leftrightarrow1-a-b-c+ab+bc+ca-abc\ge0\)

\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\)

Mà ta có: \(\hept{\begin{cases}b^2\le b\\c^3\le c\\1-abc\le1\end{cases}}\)

Từ đó suy ra:

\(a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\le1-abc\le1\)

Ta có ĐPCM

26 tháng 8 2017

32ac+b

26 tháng 8 2017

(d) qua A(5; 6) : y = mx - 5m + 6 (1) 
(C) : (x - 1)² + (y - 2)² = 1 (2) 
Thay y từ (1) vào (2) ta có phương trình hoành độ giao điểm của (d) và (C) 
(x - 1)² + (mx - 5m + 4)² = 1 
Khai triển ra pt bậc 2 : (m² + 1)x² - 2(5m² - 4m + 1)x + 25m² - 40m + 17 = 0 (*) 
Để (d) tiếp xúc (C) thì (*) phải có nghiệm kép 
∆' = (5m² - 4m + 1)² - (m² + 1)(25m² - 40m + 17) = - 4(3m² - 8m + 4) = 4(m - 2)(2 - 3m) = 0 => m = 3/2; m = 2 
KL : Có 2 đường thẳng cần tìm 
(d1) : y = (3/2)(x - 1) 
(d2) : y = 2x - 4 

∆ ∠ ∡ √ ∛ ∜ x² ⁻¹ ∫ π × ∵ ∴ | | , ⊥,∈∝ ≤ ≥− ± , ÷ ° ≠ → ∞, ≡ , ≅ , ∑,∪,¼ , ½ , ¾ , ≈ , [-b ± √(b² - 4ac) ] / 2a Σ Φ Ω α β γ δ ε η θ λ μ π ρ σ τ φ ω ё й½ ⅓ ⅔ ¼ ⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ ⁿ ₁ ₂ ₃₄₅ ₆ ₇ ₈ ₉ ₊ ₋ ₌ ₍ ₎ ∊ ∧ ∏ ∑ ∠ ,∫ ∫ ψ ω Π∮ ∯ ∰ ∇ ∂ • ⇒ ♠ ★

Y
22 tháng 5 2019

không phải nha!

là a,b,c ở trong khoảng từ 0 đến 1

Ở trong bài này thì dấu "=" xảy ra

khi (1-a)(1-b)(1-c) = 0 thì 1 trog 3 số bằng 1

abc = 0 thì có 1 số bằng 0 ( giả sử a = 0, b = 1 )

thay vào BĐT cuối thì ta đc :

\(1+c^3-c=1\)

\(\Rightarrow c\left(c+1\right)\left(c-1\right)=0\Rightarrow\left[{}\begin{matrix}c=0\\c=-1\\c=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}c=1\\c=0\end{matrix}\right.\)

Như vậy trog 3 số a,b,c có 2 số bằng 0, 1 số bằng 1 hoặc 1 số bằng 0, 2 số bằng 1.

1 tháng 2 2018

Akai HarumaVõ Đông Anh TuấnNguyễn Thanh Hằng giúp mk vs! Cảm ơn trc nha

a,b,c∈[0,1]⇒b≥b2;c≥c3

Ta có:

a,b,c∈[0,1]⇒(1−a)(1−b)(1−c)≥0

⇔1−a−b−c+ab+bc+ca−abc≥0

⇔a+b+c−ab−bc−ca+abc≤1

⇒a+b2+c3−ab−bc−ca≤1

⇒đpcm

Dấu "=" xảy ra khi trong a,b,ccó 1 số bằng 1, 1 số bằng 0, số còn lại là 1 hoặc 0

30 tháng 8 2020

Bài làm:

Ta có: \(a+b+c=1\)

\(\Leftrightarrow\left(a+b+c\right)^2=1\)

\(\Leftrightarrow1=a^2+b^2+c^2+2\left(ab+bc+ca\right)\) (1)

Xét BĐT phụ sau: \(a^2+b^2+c^2\ge ab+bc+ca\)

Ta có: \(a^2+b^2\ge2ab\) ; \(b^2+c^2\ge2bc\) ; \(c^2+a^2\ge2ca\) (Cauchy)

=> \(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

=> \(a^2+b^2+c^2\ge ab+bc+ca\)

Thay vào (1) ta được:

\(1=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)

Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{3}\)

30 tháng 8 2020

Cái này gần như là hiển nhiên

Theo bất đẳng thức quen thuộc: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(a+b+c=1\Rightarrow3\left(ab+bc+ca\right)\le1\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

20 tháng 7 2019

mình làm dc rồi nh

7 tháng 12 2017

Bài 1:

dự đoán dấu = sẽ là \(a^2=b^2=c^2=\dfrac{1}{2}\) nên cứ thế mà chém thôi .

Ta có: \(\left(a^2+1\right)\left(b^2+1\right)=\left(a^2+\dfrac{1}{2}\right)\left(\dfrac{1}{2}+b^2\right)+\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{3}{4}\)

Bunyakovsky:\(\left(a^2+\dfrac{1}{2}\right)\left(\dfrac{1}{2}+b^2\right)+\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{3}{4}\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{4}\left(a+b\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\left[\left(a+b\right)^2+1\right]\)

\(VT=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\dfrac{3}{4}\left[\left(a+b\right)^2+1\right]\left(1+c^2\right)\ge\dfrac{3}{4}\left(a+b+c\right)^2\)(đpcm)

Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{2}}\)

P/s: còn 1 cách khác nữa đó là khai triển sau đó xài schur . Chi tiết trong tệp BĐT schur .pdf

7 tháng 12 2017

Làm sao có thể dự đoán được dấu "=" trong bài này vậy ạ ?

9 tháng 7 2017

Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)

Cộng theo vế 3 BĐT trên rồi thu gọn

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)

Áp dụng tiếp BĐT AM-GM

\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)

Tương tự rồi cộng theo vế có ĐPCM

Bài 2:

Quy đồng  BĐT trên ta có:

\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)

Bài 4: Áp dụng BĐT AM-GM 

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)

Tương tự rồi cộng theo vế

Bài 5: sai đề tự nhien có dấu - :v nghĩ là +

9 tháng 7 2017

ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]