\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{99}{3^{99}}+\frac{100}{3...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2016

\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{99}{3^{99}}+\frac{100}{3^{100}}\)

\(3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{99}{3^{98}}+\frac{100}{3^{99}}\)

\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}...+\frac{99}{3^{98}}+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{99}{3^{99}}+\frac{100}{3^{100}}\right)\)

\(2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(6A=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(6A-2A=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)

\(4A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{303}{3^{100}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{203}{3^{100}}< 3\)

\(A< \frac{3}{4}\)

3 tháng 9 2019

lolang

29 tháng 6 2017

Kết quả...

17 tháng 4 2020

                                                                                                                                                                                                                  

đọc tiếp...

Tham khảo nha bạn :

Câu hỏi của Trần Minh Hưng - Toán lớp | Học trực tuyến

8 tháng 4 2018

a)\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)

\(=\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{8}-\frac{1}{16}\right)+\left(\frac{1}{32}-\frac{1}{64}\right)\)

\(=\frac{1}{4}+\frac{1}{16}+\frac{1}{64}\)

\(=\frac{16+4+1}{64}\)

\(=\frac{21}{64}< \frac{1}{3}\)(đpcm)

17 tháng 1 2018

Đặt A=1/3-2/3^2+3/3^3-4/3^4+...+99/3^99+100/3^100

=>A<1/16

3A=1-2/3+3/3^2-4/3^3+...+99/3^98+100/3^99

=>3A-A=(1-2/3+3/3^2-4/3^3+...+99/3^98+100/3^99)-(1/3-2/3^2+3/3^3-4/3^4+...+99/3^99+100/3^100)

2A=5/3^2-7/3^3+1/3^99-100/3^100

2A=1/3^2(5-7/3+1/3^97-100/3^98)

A=1/18.(8/3+1/3^97-100/3^98)

A=1/54.(8+1/3^96-100/3^97)

Vì 1/54<1/16

=>A<1/16(đpcm)