Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10/17+ 8/15 + 11/16=2400 / 4081+2176 / 4080 +2805 / 4080 = 7381/4080
mà 8160 / 4080 mới bằng 2
suy ra 7381 / 4080 < 2 vì 7381< 8160
hay 10/17+8/15+11/16 < 2
5A=1/5=2/5^2+......+11/5^11
4A=1/5+1/5^2+......+1/5^11-11/5^12
20A=1+1/5+1/5^2+.....+1/5^10-11/5^11
16A=1-1/5^11+11/5^12-11/5^11
vi 1-1/5^11<1;11/5^12-11/5^11<0
16A<1
A<1/16
k cho minh nhe
Bonking
bn tham khảo đây nhé :
Câu hỏi của Khanh Mai Lê - Toán lớp 6 - Học toán với OnlineMath
mình tính siêu đúng
...
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)
có \(\frac{1}{2\cdot3}< \frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3\cdot4}< \frac{1}{3^2}< \frac{1}{2\cdot3}\)
\(\frac{1}{4\cdot5}< \frac{1}{4^2}< \frac{1}{3\cdot4}\)
...
\(\frac{1}{9\cdot10}< \frac{1}{9^2}< \frac{1}{8\cdot9}\)
\(\Rightarrow\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{8\cdot9}>A>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}>A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(\Rightarrow1-\frac{1}{9}>A>\frac{1}{2}-\frac{1}{10}\)
\(\Rightarrow\frac{8}{9}>A>\frac{2}{5}\)
Bạn ơi, sai rồi, mình k nhầm
làm sao mà \(\frac{1}{2^2}< \frac{1}{1.2}\)được
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)
\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{98}{99}.\frac{99}{100}\)
\(\Rightarrow A^2>\frac{1}{100}=\frac{1}{10^2}\)
Vậy \(A>\frac{1}{10}\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\)
\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{9998}{9999}\)
\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{9998}{9999}.\frac{9999}{10000}\)
\(\Rightarrow A^2>\frac{1}{10000}=\frac{1}{100^2}\)
\(VayA>\frac{1}{100}=B\)