Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(25x^2-20ax+5a^2=25x^2-20ax+4a^2+a^2=\left(5x-2a\right)^2+a^2\ge a^2\)
=>\(\frac{a^2}{25x^2-20ax+5a^2}\le\frac{a^2}{a^2}=1\Rightarrow P\le1\)
dấu = xảy ra <=> x=2/5.a
Ta có \(\dfrac{\left(x^2-yz\right)^2}{a^2}=\dfrac{\left(y^2-zx\right)\left(z^2-xy\right)}{bc}\) mà a2 = bc nên:
\(\left(x^2-yz\right)^2=\left(y^2-zx\right)\left(z^2-xy\right)\).
\(\Leftrightarrow x^4+y^2z^2-2x^2yz=y^2z^2+x^2yz-xy^3-xz^3\)
\(\Leftrightarrow x^4+xy^3+xz^3-3x^2yz=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x^3+y^3+z^3=3xyz\end{matrix}\right.\).
Rõ ràng nếu \(x^3+y^3+z^3=3xyz\) thì \(x=y=z\) (tính chất quen thuộc). Do đó \(\dfrac{x^2-yz}{a}=0\) (vô lí).
Do đó x = 0.
Kết hợp với x + y + z = 2010 thì y + z = 2010.
Rõ ràng với mọi x, y, z thỏa mãn y + z = 2010 và x = 0 thì ta thấy thỏa mãn đk bài toán.
Vậy...
em gửi bài qua fb thầy chữa cho nhé, tìm fb của thầy bằng sđt: 0975705122 nhé.
\(a^2x+3ax+9=a^2\)
\(a^2x+3ax+9-a^2=0\)
\(ax\left(a+3\right)+\left(3-a\right)\left(a+3\right)=0\)
\(\left(a+3\right)\left(ax+3-a\right)=0\)
\(\left(a+3\right)\left[a\left(x-1\right)+3\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}a+3=0\\a\left(x-1\right)+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=-3\left(L\right)\\a=\left\{\pm1;3\right\}\left(N\right);a=-3\left(L\right)\end{cases}}\)
Vậy \(a=\left\{\pm1;3\right\}\)
\(A=\dfrac{a^2}{25x^2-20ax+5a^2}\\ =\dfrac{a^2}{\left(5x\right)^2-2.5x.2a+4a^2+a^2}\\ =\dfrac{a^2}{\left(5x-2a\right)^2+a^2}\)
rồi sao bn, tìm GTLN mak