Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
a) Vì \(\left|2x+1\right|\ge0\forall x\in R\\ \Rightarrow3\left|2x+1\right|\ge0\forall x\in R\\ \Rightarrow3\left|2x+1\right|-4\ge-4\forall x\in R\\ \Rightarrow A\ge-4\forall x\in R\)
Vậy GTNN của A là -4 đạt được khi \(x=-\dfrac{1}{2}\)
Mai mk phải nộp rồi ! Các bn ơi giúp mk với! Help Me ! Thank you !
1
Áp dụng tính chất dãy tỉ số bằng nhau
`=>a/(b+c)=c/(a+b)=b/(a+c)=(a+b+c)/(2a+2b+2c)=1/2`
`=>b+c=2a`
`=>a+b+c=3a`
Hoàn toàn tương tự:
`a+b+c=3b`
`a+b+c=3c`
`=>a=b=c`
`=>A=1/2+1/2+1/2=3/2`
2
`A in Z`
`=>x+3 vdots x-2`
`=>x-2+5 vdots x-2`
`=>5 vdots x-2`
`=>x-2 in Ư(5)={1,-1,5,-5}`
`+)x-2=1=>x=3(TM)`
`+)x-2=-1=>x=1(TM)`
`+)x-2=5=>x=7(TM)`
`+)x-2=-5=>x=-3(TM)`
Vậy với `x in {1,3,-3,7}` thì `A in Z`
`A in Z`
`=>1-2x vdots x+3`
`=>-2(x+3)+1+6 vdots x+3`
`=>7 vdots x+3`
`=>x+3 in Ư(7)={1,-1,7,-7}`
`+)x+3=1=>x=-2(TM)`
`+)x+3=-1=>x=-4(TM)`
`+)x+3=-7=>x=-10(TM)`
`+)x+3=7=>x=4(TM)`
Vậy `x in {2,-4,4,10}` thì `A in Z`
Bài 2:
- Thay x=0 vào P(x) ta được:
P(0)=d => d là số lẻ.
- Thay x=1 vào P(x) ta được:
P(1)=a+b+c+d =>a+b+c+d là số lẻ mà d lẻ nên a+b+c là số chẵn.
- Gọi e là nghiệm của P(x), thay e vào P(x) ta được:
P(e)=ae3+be2+ce+d=0
=>ae3+be2+ce=-d
=>e(ae2+be+c)=-d
=>e=\(\dfrac{-d}{ae^2+be+c}\).
Ta thấy: -d là số lẻ, ae2+be+c là số chẵn nên -d không thể chia hết cho
ae2+be+c.
- Vậy P(x) không thể có nghiệm là số nguyên.
\(a,x< 50\Leftrightarrow\sqrt{x}-1< 5\sqrt{2}-1\\ M=\dfrac{\sqrt{x}-1}{2}\in Z\\ \Leftrightarrow\sqrt{x}-1\in B\left(2\right)=\left\{0;2;4;6\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{1;3;5;7\right\}\\ \Leftrightarrow x\in\left\{1;9;25;49\right\}\\ b,\Leftrightarrow\sqrt{x}-5\inƯ\left(9\right)=\left\{-3;-1;1;3;9\right\}\left(\sqrt{x}-5>-5\right)\\ \Leftrightarrow\sqrt{x}\in\left\{2;4;6;8;14\right\}\\ \Leftrightarrow x\in\left\{4;16;36;64;196\right\}\)
b/ \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
\(\Rightarrow\left(\dfrac{a}{b}\right)^3=\dfrac{a}{d}\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
=> \(\left(\dfrac{a}{b}\right)^3=\left(\dfrac{a+b+c}{c+d+b}\right)^3\) (2)Từ (1) và (2)=>đpcm
Dễ thấy x càng lớn thì A càng lớn
vậy ko có Max
Tìm Min \(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)+2020\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)+2020\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)+2020\)
Đặt \(x^2+5x=a\)
\(\Rightarrow A=\left(a-6\right)\left(a+6\right)+2020\)
\(=a^2-6a+6a-36+2020\)
\(=a^2+1984\ge1984\left(a^2\ge0\right)\)
Vậy Min A = 1984
Dấu "=" xảy ra khi \(a=0\Leftrightarrow x^2+5x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)