K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2018

điều kiện cho \(A\)\(\left(x\ne\dfrac{-1}{2}\right)\)cho \(B\)\(x\ne1\)

ta có : \(A=\dfrac{1}{\sqrt{4x^2+4x+1}}=\dfrac{1}{\sqrt{\left(2x+1\right)^2}}=\dfrac{1}{\left|2x+1\right|}\)

\(\Rightarrow\left[{}\begin{matrix}A=\dfrac{1}{2x+1}\left(x\ge\dfrac{-1}{2}\right)\\A=\dfrac{1}{-\left(2x+1\right)}\left(x< \dfrac{-1}{2}\right)\end{matrix}\right.\) \(\Rightarrow A\) nguyên \(\Leftrightarrow1⋮2x+1\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=1\\2x+1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) vậy \(x=0;x=-1\) thì \(A\) nguyên (1)

ta có : \(B=\dfrac{2x-2}{\sqrt{x^2-2x+1}}=\dfrac{2x-2}{\sqrt{\left(x-1\right)^2}}=\dfrac{2x-2}{\left|x-1\right|}\)

\(\Rightarrow\left[{}\begin{matrix}B=\dfrac{2x-2}{x-1}\left(x\ge1\right)\\B=\dfrac{2x-2}{-\left(x-1\right)}\left(x< 1\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}B=2\left(x\ge1\right)\\B=-2\left(x< 1\right)\end{matrix}\right.\)

\(\Rightarrow B\) nguyên với mọi giá trị của \(x\ne1\)

vậy \(x\in R\backslash\left\{1\right\}\) thì \(B\) nguyên (2)

từ (1)(2) ta có \(x=0;x=-1\) thì cả \(A\)\(B\) đều nguyên

7 tháng 10 2018

Ta có \(A=\frac{1}{\sqrt{4x^2+4x+1}}=\frac{1}{\sqrt{\left(2x+1\right)^2}}=\frac{1}{\left|2x+1\right|}\)

\(B=\frac{2x-2}{\sqrt{x^2-2x+1}}=\frac{2\left(x-1\right)}{\sqrt{\left(x-1\right)^2}}=\frac{2\left(x-1\right)}{\left|x-1\right|}\)

7 tháng 10 2018

Đọc lại đề đi bạn ơi :v

14 tháng 6 2023

 P = A.B = \(\dfrac{x-7}{\sqrt{x}+2}=\dfrac{\left(x-4\right)-3}{\sqrt{x}+2}=\dfrac{\left(\sqrt{x}-2\right).\left(\sqrt{x}+2\right)-3}{\sqrt{x}+2}\)

\(=\sqrt{x}-2-\dfrac{3}{\sqrt{x}+2}\)

\(P\inℤ\) <=> x là số chính phương và \(\dfrac{3}{\sqrt{x}+2}\inℤ\)

mà \(\sqrt{x}+2\ge2\Rightarrow\dfrac{3}{\sqrt{x}+2}\inℤ\Leftrightarrow\sqrt{x}+2=3\)

\(\Leftrightarrow x=1\) (thỏa)

Vậy x = 1 thì P \(\inℤ\)

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

Lời giải:

ĐKXĐ: $x>0; x\neq 4$

Sửa lại đề 1 chút.
\(A=\left(\frac{1}{\sqrt{x}+2}+\frac{1}{\sqrt{x}-2}\right).\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{\sqrt{x}-2+\sqrt{x}+2}{(\sqrt{x}+2)(\sqrt{x}-2)}.\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.\frac{\sqrt{x}-2}{\sqrt{x}}\)

\(=\frac{2}{\sqrt{x}+2}\)

\(B=\frac{7}{3}A=\frac{14}{3(\sqrt{x}+2)}\)

Với mọi $x>0$ thì hiển nhiên $B>0$. Mặt khác, $\sqrt{x}+2\geq 2$ nên $B=\frac{14}{3(\sqrt{x}+2)}\leq \frac{14}{6}=\frac{7}{3}$

Vậy $0< B\leq \frac{7}{3}$. $B$ đạt giá trị nguyên thì $B=1;2$

$B=1\Leftrightarrow \frac{14}{3(\sqrt{x}+2)}=1$

$\Leftrightarrow x=\frac{64}{9}$ (thỏa mãn)

$B=2\Leftrightarrow \frac{14}{3(\sqrt{x}+2)}=2$

$\Leftrightarrow x=\frac{1}{9}$ (thỏa mãn)

 

e cảm ơn ạ

 

30 tháng 12 2020

a) A= \(\dfrac{\sqrt{x}}{\sqrt{x-2}}-\dfrac{4}{x-2\sqrt{x}}=\dfrac{\sqrt{x}\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}\sqrt{x}}=\dfrac{x+2\sqrt{x}}{x}\)

b) Ta có x >0  nên \(\sqrt{x}\) >0 

 <=>  \(2\sqrt{x}\)  > 0 

 <=>  \(x+2\sqrt{x}\)  > x 

 <=> \(\dfrac{x+2\sqrt{x}}{x}\)  > \(\dfrac{x}{x}\)

 hay A > 1

c) 

 

30 tháng 12 2020

còn câu c bạn?

 

28 tháng 9 2021

\(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\left(đk:x\ge0,x\ne1\right)\)

\(=\dfrac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2.2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}=\dfrac{2}{x+\sqrt{x}+1}\)

Để A nguyên thì: \(x+\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Mà \(x+\sqrt{x}+1=\left(x+\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

\(\Rightarrow x+\sqrt{x}+1\in\left\{1;2\right\}\)

+ Với \(x+\sqrt{x}+1=1\)

\(\Leftrightarrow\sqrt[]{x}\left(\sqrt{x}+1\right)=0\)

\(\Leftrightarrow x=0\left(tm\right)\left(do.\sqrt{x}+1\ge1>0\right)\)

+ Với \(x+\sqrt{x}+1=2\)

\(\Leftrightarrow\left(x+\sqrt{x}+\dfrac{1}{4}\right)=\dfrac{5}{4}\)

\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{2}\right)^2=\dfrac{5}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+\dfrac{1}{2}=\dfrac{\sqrt{5}}{2}\\\sqrt{x}+\dfrac{1}{2}=-\dfrac{\sqrt{5}}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{\sqrt{5}-1}{2}\\\sqrt{x}=-\dfrac{\sqrt{5}+1}{2}\left(VLý\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{3-\sqrt{5}}{2}\left(tm\right)\)

Vậy \(S=\left\{1;\dfrac{3-\sqrt{5}}{2}\right\}\)

16 tháng 11 2021

Đề sai rồi bạn

AH
Akai Haruma
Giáo viên
9 tháng 9 2021

Lời giải:

a.

\(A=\frac{(x\sqrt{x}-4x)-(\sqrt{x}-4)}{2(\sqrt{x}-4)(\sqrt{x}-2)(\sqrt{x}-1)}\)

ĐKXĐ: \(\left\{\begin{matrix} x\geq 0\\ \sqrt{x}-4\neq 0\\ \sqrt{x}-2\neq 0\\ \sqrt{x}-1\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq 16\\ x\neq 4\\ x\neq 1\end{matrix}\right.\)

\(A=\frac{x(\sqrt{x}-4)-(\sqrt{x}-4)}{2(\sqrt{x}-4)(\sqrt{2}-2)(\sqrt{x}-1)}=\frac{(x-1)(\sqrt{x}-4)}{2(\sqrt{x}-4)(\sqrt{x}-2)(\sqrt{x}-1)}\)

\(=\frac{(\sqrt{x}-1)(\sqrt{x}+1)(\sqrt{x}-4)}{2(\sqrt{x}-4)(\sqrt{x}-2)(\sqrt{x}-1)}=\frac{\sqrt{x}+1}{2(\sqrt{x}-2)}\)

b.

Với $x$ nguyên, để $A\in\mathbb{Z}$ thì $\sqrt{x}+1\vdots 2(\sqrt{x}-2)}$

$\Rightarrow \sqrt{x}+1\vdots \sqrt{x}-2$
$\Leftrightarrow \sqrt{x}-2+3\vdots \sqrt{x}-2$

$\Leftrightarrow 3\vdots \sqrt{x}-2$

$\Rightarrow \sqrt{x}-2\in\left\{\pm 1;\pm 3\right\}$

$\Rightarrow x\in\left\{1;9;25\right\}$

Thử lại thấy đều thỏa mãn.

 

27 tháng 11 2018

\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(Q=x+1\)

Không thể tìm được GTLN hay GTNN của Q.

b)

   \(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)

Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)

Vậy x=1, x=9 là các giá trị cần tìm