Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt
\(\frac{x}{5}=\frac{y}{4}=k=>x=5k,y=4k\)
\(=>x^2.y=25k^2.4k=100\)
\(k^3=1=>k=1\)
\(=>x=5,y=4\)
Vậy x=5, y=4
Bài 1: HS tự làm
Bài 2:
\(ac=b^2\Rightarrow\frac{a}{b}=\frac{b}{c}\Rightarrow a=c\left(a,b,c\ne0\right)^{\left(1\right)}\)
\(ab=c^2\Rightarrow\frac{a}{c}=\frac{c}{b}\Rightarrow a=b\left(a,b,c\ne0\right)^{\left(2\right)}\)
\(\left(1\right),\left(2\right)\Rightarrow a=b=c\)
\(\Rightarrow\frac{b^{3333}}{a^{1111}c^{2222}}=\frac{b^{3333}}{a^{1111+2222}}=\frac{b^{3333}}{a^{3333}}=1\)
Bài làm:
Vì a,b,c khác 0 nên:
Ta có: \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)
\(\Leftrightarrow\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\) (1) (chia cả 3 vế cho abc)
Áp dụng t/c dãy tỉ số bằng nhau ta được:
\(\left(1\right)=\frac{x+y-z-x}{ab-ca}=\frac{y+z-x-y}{bc-ab}=\frac{z+x-y-z}{ca-bc}\)
\(=\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
=> đpcm
Bài làm:
Vì a,b,c khác 0 nên:
Ta có: a(y+z)=b(z+x)=c(x+y)�(�+�)=�(�+�)=�(�+�)
⇔y+zbc=z+xca=x+yab⇔�+���=�+���=�+��� (1) (chia cả 3 vế cho abc)
Áp dụng t/c dãy tỉ số bằng nhau ta được:
(1)=x+y−z−xab−ca=y+z−x−ybc−ab=z+x−y−zca−bc(1)=�+�−�−���−��=�+�−�−���−��=�+�−�−���−��
=y−za(b−c)=z−xb(c−a)=x−yc(a−b)=�−��(�−�)=�−��(�−�)=�−��(�−�)
=> đpcm
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Cộng 1 vào mỗi tỉ số,ta được :
\(\frac{a}{b+c}+1=\frac{b}{a+c}+1=\frac{c}{a+b}+1\)
\(\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)
Nếu a + b + c = 0 thì : b + c = -a ; c + a = -b ; a + b = -c
\(\Rightarrow P=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)
Nếu a + b + c \(\ne\) 0 thì : b + c = a + c = a + b \(\Rightarrow\)a = b = c
\(\Rightarrow P=2+2+2=6\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{b+c}=\frac{1}{2}\\\frac{b}{a+c}=\frac{1}{2}\\\frac{c}{a+b}=\frac{1}{2}\end{cases}\Rightarrow\hept{\begin{cases}b+c=2a\\a+c=2b\\a+b=2c\end{cases}}}\)
Thay vào biểu thức A ta có :
\(A=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)
Vậy..........
\(\hept{\begin{cases}ac=b^2\Rightarrow\frac{a}{b}=\frac{b}{c}\\ab=c^2\Rightarrow\frac{c}{a}=\frac{b}{c}\end{cases}\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}}\)
Theo t/c cuae dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\) (vì a+b+c khác 0)
=> a/b = 1 => a = b
b/c = 1 => b = c
=> a=b=c
=> \(\frac{b^{3333}}{a^{1111}.c^{2222}}=\frac{b^{3333}}{b^{1111}.b^{2222}}=1\)
cho ac=b2;ab=c2,a+b+ckhác 0 và a,b,clà các số khác 0.
tính;b3333a1111.c2222
Toán lớp 7
{
⇒ab =bc =ca
Theo t/c cuae dãy tỉ số bằng nhau ta có:
ab =bc =ca =a+b+cb+c+a =1 (vì a+b+c khác 0)
=> a/b = 1 => a = b
b/c = 1 => b = c
=> a=b=c
=> b3333a1111.c2222 =b3333b1111.b2222 =1