Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để A = 0 thì \(x-7=0\Leftrightarrow x=7\)( thỏa mãn ĐKXĐ )
Để A > 0 thì có 2 trường hợp :
+) TH1 : \(\hept{\begin{cases}x-7>0\\x+4>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>7\\x>-4\end{cases}\Leftrightarrow}x>7}\)
+) TH2: \(\hept{\begin{cases}x-7< 0\\x+4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 7\\x< -4\end{cases}}}\Leftrightarrow x< -4\)
Để A < 0 thì có 2 trường hợp :
+) TH1: \(\hept{\begin{cases}x-7>0\\x+4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>7\\x< -4\end{cases}\Leftrightarrow}7< x< -4\left(\text{vô lí}\right)}\)
+) TH2: \(\hept{\begin{cases}x-7< 0\\x+4>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 7\\x>-4\end{cases}\Leftrightarrow}-4< x< 7}\)
b) Để A thuộc Z thì x -7 ⋮ x + 4
<=> x + 4 - 11 ⋮ x + 4
Vì x + 4 ⋮ x + 4
=> 11 ⋮ x + 4
=> x + 4 thuộc Ư(11) = { 1; 11; -1; -11 }
=> x thuộc { -3; 7; -5; -15 }
Vậy...........
A= \(\frac{x+6}{x-4}=\frac{x-4+10}{x-4}=1+\frac{10}{x-4}\)
Để A \(\in\)Z
=> 1+\(\frac{10}{x-4}\)\(\in\)Z
=> \(\frac{10}{x-4}\in\)Z
=> x-4 \(\ne\)0
=> x\(\ne\)4
Vậy x\(\ne\)4 thì A\(\in\)Z
b) Để A>0
=> 1+\(\frac{10}{x-4}\)>0
=> \(\frac{10}{x-4}>-1\)
=> x-4 >-10
=> x> -6
Vậy x> -6 thì A>0
c)
Để A\(\le\)0
=> 1+\(\frac{10}{x-4}\le0\)
=> \(\frac{10}{x-4}\le-1\)
=> x-4\(\le\)-10
=> x\(\le\)-6
Vậy .....
2.x + y = xy
\(\Rightarrow\)x=y (x-1)
\(\Rightarrow\)x : y = x -1
\(\Rightarrow\)x - 1 = x + y
\(\Rightarrow\)y = - 1
- Nếu y = 1 có:
x + 1 = x
\(\Leftrightarrow\)1 = 0 (loại)
- Nếu y =-1 có
x - 1 = x
\(\Leftrightarrow\)x = \(\frac{1}{2}\)
thay vào thấy tỏa mãn
Vậy x = 1 \(\frac{1}{2}\); y = \(-\)1
ủng hộ nha!
a) Đk: x#2 (*)
Với (*), A=(x - 2 + 5)/(x - 2)= 1 + 5/(x - 2)
A nguyên <=> x-2 thuộc Ư(5)={-5;-1;1;5}
=> S={-3;1;3;7}
b) Đk: x#-3
Với (*), A= (- 2x - 6 + 7)/(x + 3) = -2 + 7/(x+3)
A nguyên <=> x + 3 thuộc Ư(7)={1;-1;7;-7}
=> S = {-2;- 4;4;-10}
a: Khi x=1/4 thì \(A=\left(\dfrac{1}{2}-5\right):\left(\dfrac{1}{2}+3\right)=\dfrac{-9}{2}:\dfrac{7}{2}=\dfrac{-9}{7}\)
b: Để A là số nguyên thì \(\sqrt{x}+3-8⋮\sqrt{x}+3\)
\(\Leftrightarrow\sqrt{x}+3\in\left\{4;8\right\}\)
hay \(x\in\left\{1;25\right\}\)