Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+2ab+b^2-2ab\right)+6a^2b^2\)
\(=\left(a^2+2ab+b^2-3ab\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\)
\(=\left(a+b\right)^2-3ab+3ab\times\left(-2ab\right)+6a^2b^2\)
\(=-3ab-6a^2b^2+6a^2b^2\)
= - 3ab
\(A=a^3-b^3-84\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)-84\)
\(=\left(a-b\right)\left\{\left(a-b\right)^2+3ab\right\}\)
\(=6.\left[6^2+3.9\right]=6.63=379\)
\(Ủng\)hộ nhak
\(a+b=4\)
\(\Rightarrow\left(a+b\right)^2=4^2=16\)
\(\Rightarrow a^2+b^2+2ab=16\)
\(\Rightarrow a^2+b^2+2.3=16\)
\(\Rightarrow a^2+b^2=16-6=10\)
\(\Rightarrow a^2+b^2-2ab=10-6=4\)
\(\Rightarrow\left(a-b\right)^2=4\)
\(\Rightarrow a-b\in\left\{2;-2\right\}\)
\(\left(a+b\right)^2=4^2=16\)
\(=>a^2+2ab+b^2=16\)
\(=>a^2+b^2+6=16\)
\(=>a^2+b^2=10\)
Ta có \(a^2-2ab+b^2=10-2.3\)
\(=10-6=4\)
\(=>a^2-2ab+b^2=\left(a-b\right)^2=4\)
\(=>a-b=\sqrt{4}=2\)
Vậy a - b = 2
Ủng hộ nha
Từ \(a+b=10=>\left(a+b\right)^2=100=>a^2+2ab+b^2=100=>a^2+2.4+b^2=100.\)
\(\Rightarrow a^2+b^2=92\)
\(\left(a^2+b^2\right).\left(a^3+b^3\right)=a^5+a^2b^3+a^3b^2+b^5=92.880\)
\(=>a^5+b^5+a^2b^2\left(a+b\right)=80960\)
\(=>a^5+b^5+\left(ab\right)^2\left(a+b\right)=80960\)
\(=>a^5+b^5+4^2.10=80960\)
\(=>a^5+b^5=80800\)
a) Ta có: \(a^3+b^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)\)
Thay \(ab=40\) và \(a+b=-6\) vào biểu thức ta có
\(\left(-6\right)^3-3\cdot7\cdot\left(-6\right)=-90\)
b) Ta có: \(a^3-b^3\)
\(=\left(a-b\right)^3+3ab\left(a-b\right)\)
Thay \(ab=40\) và \(a-b=3\) vào biểu thức ta có:
\(3^3+3\cdot40\cdot3=387\)
a: a^3+b^3=(a+b)^3-3ab(a+b)
=(-6)^3-3*7*(-6)
=-90
b: a^3-b^3=(a-b)^3+3ab(a-b)
=3^3+3*40*3
=387
a)\(a+b=-5\)
\(\Rightarrow\left(a+b\right)^2=25\)
\(\Leftrightarrow a^2+2ab+b^2=25\)
\(\Leftrightarrow a^2+12+b^2=25\)
\(\Leftrightarrow a^2+b^2=13\)
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=-5\left(13-6\right)=-35\)
1) ( a - b )2 = a2 - 2ab + b2 = a2 + 2ab + b2 - 4ab = ( a + b )2 - 4ab
= 72 - 4.5 = 49 - 20 = 29
2) ( a + b )2 = a2 + 2ab + b2 = a2 - 2ab + b2 + 4ab = ( a - b )2 + 4ab
= 52 + 4.3 = 25 + 12 = 37
\(a+b=p\Rightarrow a^2+2ab+b^2=p^2\)
\(\Rightarrow a^2-2ab+b^2+4ab=p^2\)
\(\Rightarrow\left(a-b\right)^2+4ab=p^2\)
\(\Rightarrow q^2+4ab=p^2\Rightarrow ab=\frac{p^2-q^2}{4}\)
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
\(=p\left(q^2+\frac{p^2-q^2}{4}\right)=\frac{p\left(3q^2+p^2\right)}{4}\)