Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{a}{b}< \dfrac{a+n}{b+n}\Leftrightarrow a\left(b+n\right)< b\left(a+n\right)\)\(\Leftrightarrow ab+an< ab+bn\)\(\Leftrightarrow a< b\) (vì \(n>0\)).
Vậy \(\dfrac{a}{b}< \dfrac{a+n}{b+n}\Leftrightarrow a< b.\)
Tương tự
\(\dfrac{a}{b}>\dfrac{a+n}{b+n}\Leftrightarrow a>b\) ;
\(\dfrac{a}{b}=\dfrac{a+n}{b+n}\Leftrightarrow a=b\).
\(\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{a\left(b+2017\right)}{b\left(b+2017\right)}\\\dfrac{a+2017}{b+2017}=\dfrac{b\left(a+2017\right)}{b\left(b+2017\right)}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{ab+2017a}{b^2+2017b}\\\dfrac{a+2017}{b+2017}=\dfrac{ab+2017b}{b^2+2017b}\end{matrix}\right.\)
Ta cần so sánh:
\(ab+2017a\) với \(ab+2017b\)
Cần so sánh \(a\) với \(b\)
Nếu \(a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+2017}{b+2017}\)
Nếu \(a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+2017}{b+2017}\)
Nếu \(a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+2017}{b+2017}\)
Mấy câu sau dễ tương tự
Câu 2:
Ta có: \(x^2=1\)
=>x=1 hoặc x=-1
=>x là số hữu tỉ
A)\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)=\(\dfrac{a}{a-b}=\dfrac{c}{c-d}\) (đpcm)
2: \(A=9^n\cdot81-9^n+3^n\cdot9+3^n\)
\(=9^n\cdot80+3^n\cdot10\)
\(=10\left(9^n\cdot8+3^n\right)⋮10\)
+) Nếu \(a>b\Leftrightarrow\dfrac{a}{b}>1\Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\)
+) Nếu \(a=b\Leftrightarrow\dfrac{a}{b}=1\Leftrightarrow\dfrac{a}{b}=\dfrac{a+n}{b+n}\)
+) Nếu \(a< b\Leftrightarrow\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+n}{b+n}\)
\(a>b\)
\(\Rightarrow\dfrac{a}{b}>1\Rightarrow\dfrac{a+n}{b+n}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\)
\(a< b\)
\(\Rightarrow\dfrac{a}{b}< 1\Rightarrow\dfrac{a+n}{b+n}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+n}{b+n}\)
\(a=b\)
\(\Rightarrow\dfrac{a}{b}=1\Rightarrow\dfrac{a+n}{b+n}=1\Rightarrow\dfrac{a}{b}=\dfrac{a+n}{b+n}\)
Chúc bạn học tốt!
Bạn quy đồng lên rồi dựa vào giả thiết là có thể làm được thôi!!
Dễ mà~~
Giải:
Ta có:
\(\dfrac{a}{b}< \dfrac{a+n}{b+n}\) \(\Leftrightarrow a\left(b+n\right)< b\left(a+n\right)\)
\(\Leftrightarrow ab+an< ab+bn\Leftrightarrow a< b\) (Vì \(n>0\))
Vậy \(\dfrac{a}{b}< \dfrac{a+n}{b+n}\Leftrightarrow a< b\)
Tương tự ta cũng có:
\(\dfrac{a}{b}>\dfrac{a+n}{b+n}\Leftrightarrow a>b\)
\(\dfrac{a}{b}=\dfrac{a+n}{b+n}\Leftrightarrow a=b\)
Nếu \(a>b\Rightarrow an>bn\Rightarrow ab+an>ab+bn\)
\(\Leftrightarrow a\left(b+n\right)>b\left(a+n\right)\)
\(\Leftrightarrow\dfrac{a+n}{b+n}< \dfrac{a}{b}\)
Nếu \(a< b\Rightarrow an< bn\Rightarrow ab+an< ab+bn\)
\(\Leftrightarrow a\left(b+n\right)< b\left(a+n\right)\)
\(\Leftrightarrow\dfrac{a+n}{b+n}>\dfrac{a}{b}\)