\(\varepsilon\)Z và b>0, n>0. Hãy so sánh
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

Giải:

Ta có:

\(\dfrac{a}{b}< \dfrac{a+n}{b+n}\) \(\Leftrightarrow a\left(b+n\right)< b\left(a+n\right)\)

\(\Leftrightarrow ab+an< ab+bn\Leftrightarrow a< b\) (Vì \(n>0\))

Vậy \(\dfrac{a}{b}< \dfrac{a+n}{b+n}\Leftrightarrow a< b\)

Tương tự ta cũng có:

\(\dfrac{a}{b}>\dfrac{a+n}{b+n}\Leftrightarrow a>b\)

\(\dfrac{a}{b}=\dfrac{a+n}{b+n}\Leftrightarrow a=b\)

25 tháng 8 2017

\(\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{a\left(b+2017\right)}{b\left(b+2017\right)}\\\dfrac{a+2017}{b+2017}=\dfrac{b\left(a+2017\right)}{b\left(b+2017\right)}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{ab+2017a}{b^2+2017b}\\\dfrac{a+2017}{b+2017}=\dfrac{ab+2017b}{b^2+2017b}\end{matrix}\right.\)

Ta cần so sánh:

\(ab+2017a\) với \(ab+2017b\)

Cần so sánh \(a\) với \(b\)

Nếu \(a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+2017}{b+2017}\)

Nếu \(a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+2017}{b+2017}\)

Nếu \(a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+2017}{b+2017}\)

Mấy câu sau dễ tương tự

12 tháng 8 2017

1) Nếu a/b>1 thì a/b>b/b<=>a>b
2)Nếu a>b thì a.z>b.z=>a/b>z/z<=>a/b>1
3)Nếu a/b<1 thì a/b<b/b<=>a<b
4)Nếu a<b=>a.z<b.z=>a/b<z/z<=>a/b<1

8 tháng 11 2017

+) Nếu \(a>b\Leftrightarrow\dfrac{a}{b}>1\Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\)

+) Nếu \(a=b\Leftrightarrow\dfrac{a}{b}=1\Leftrightarrow\dfrac{a}{b}=\dfrac{a+n}{b+n}\)

+) Nếu \(a< b\Leftrightarrow\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+n}{b+n}\)

8 tháng 11 2017

\(a>b\)

\(\Rightarrow\dfrac{a}{b}>1\Rightarrow\dfrac{a+n}{b+n}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\)

\(a< b\)

\(\Rightarrow\dfrac{a}{b}< 1\Rightarrow\dfrac{a+n}{b+n}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+n}{b+n}\)

\(a=b\)

\(\Rightarrow\dfrac{a}{b}=1\Rightarrow\dfrac{a+n}{b+n}=1\Rightarrow\dfrac{a}{b}=\dfrac{a+n}{b+n}\)

Chúc bạn học tốt!

7 tháng 7 2017

1.

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)  (1)

Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\)  (2)

Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

2.

Ta có: a(b + n) = ab + an (1)

           b(a + n) = ab + bn (2)

Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)

Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)

Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)

Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)

Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)

8 tháng 6 2017

1

a) Vì \(\dfrac{a}{b}< \dfrac{c}{d}\)

\(\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\)

\(\Rightarrow ad< bc\)

2

b) Ta có : \(\dfrac{-1}{3}=\dfrac{-16}{48};\dfrac{-1}{4}=\dfrac{-12}{48}\)

Ta có dãy sau : \(\dfrac{-16}{48};\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48};\dfrac{-12}{48}\)

Vậy 3 số hữu tỉ xen giữa \(\dfrac{-1}{3}\)\(\dfrac{-1}{4}\) là :\(\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48}\)

1a ) Ta có : \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)

\(\Leftrightarrow\) \(\dfrac{ad}{bd}\) < \(\dfrac{bc}{bd}\) \(\Rightarrow\) ad < bc

1b ) Như trên

2b) \(\dfrac{-1}{3}\) = \(\dfrac{-16}{48}\) ; \(\dfrac{-1}{4}\) = \(\dfrac{-12}{48}\)

\(\dfrac{-16}{48}\) < \(\dfrac{-15}{48}\) <\(\dfrac{-14}{48}\) < \(\dfrac{-13}{48}\) < \(\dfrac{-12}{48}\)

Vậy 3 số hữu tỉ xen giữa là.................

8 tháng 6 2017

Ta có: \(\dfrac{a}{b}< \dfrac{a+n}{b+n}\Leftrightarrow a\left(b+n\right)< b\left(a+n\right)\)\(\Leftrightarrow ab+an< ab+bn\)\(\Leftrightarrow a< b\) (vì \(n>0\)).
Vậy \(\dfrac{a}{b}< \dfrac{a+n}{b+n}\Leftrightarrow a< b.\)
Tương tự
\(\dfrac{a}{b}>\dfrac{a+n}{b+n}\Leftrightarrow a>b\) ;
\(\dfrac{a}{b}=\dfrac{a+n}{b+n}\Leftrightarrow a=b\).

22 tháng 6 2019

Ta có: ab<a+nb+n⇔a(b+n)<b(a+n)ab<a+nb+n⇔a(b+n)<b(a+n)⇔ab+an<ab+bn⇔ab+an<ab+bn⇔a<b⇔a<b (vì n>0n>0).
Vậy ab<a+nb+n⇔a<b.ab<a+nb+n⇔a<b.
Tương tự
ab>a+nb+n⇔a>bab>a+nb+n⇔a>b ;
ab=a+nb+n⇔a=bab=a+nb+n⇔a=b.

13 tháng 6 2018

Bài 1:

Ta có:

\(\dfrac{a}{b}>\dfrac{c}{d}\)

\(\Leftrightarrow\dfrac{a.d}{b.d}>\dfrac{b.c}{b.d}\left(b;d>0\right)\)

\(\Leftrightarrow ad>bc\)

Vậy ...

Bài 2:

Ta có:

\(0< a< 5< b\)

\(\Leftrightarrow a;b>0\)

\(\Leftrightarrow\dfrac{b}{a}>0\)

\(a< 5< b\)

\(\Leftrightarrow a< b\)

\(\Leftrightarrow\dfrac{b}{a}>1\)

Vậy ...