\(\in\) N thõa mãn 7a+3b chia hết cho 23

CMR 4a+5b chia hết cho 23

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

Ta có: 23a + 23b chia hết cho 23
=>\(7a+3b+16a+20b\) chia hết cho 23 
=>\(7a+3b+4\left(4a+5b\right)\)chia hết cho 23 

Theo đề bài: 7a + 3b chia hết cho 23

=> 4(4a + 5b) chia hết cho 23

Mà 4 không chia hết cho 23 nên 4a + 5b phải chia hết cho 23 (đpcm)

21 tháng 1 2017
xét hiệu: 7(4a+5b)-4(7a+3b) =28a+35b-28a-12b =(28a-28a)+(35b-12b) =23b vì 23 chia hết 23 suy ra 23b chia hết 23 suy ra 7(4a+5b)-4(7a+3b) chia hết cho 23 (1) mà 7a+3b chia hết 23 suy ra 4(7a+3b) chia hết 23 suy ra 4a+5b chia hết 23 k cho tui với
30 tháng 6 2017

nếu 4a + 5b chia hết cho 23 (1)


(1) \(\Rightarrow\) (7a + 3b) + (4a + 5b) = (11a + 8b) chia hết cho 23 (2)


(1) \(\Rightarrow\) (7a + 3b) - (4a + 5b) = (3a - 2b) chia hết cho 23

\(\Rightarrow\) (3a - 2b).4 chia hết cho 23 \(\Leftrightarrow\) (12a - 8b) chia hết cho 23

(3) lấy (2) + (3) = 23a chia hết cho 23 (đúng \(\forall a\))


Vậy 4a + 5b chia hết cho 23

30 tháng 6 2017

Giải:

Ta có: \(7a+3b⋮23\Rightarrow6\left(7a+3b\right)⋮23\)

\(\Rightarrow6\left(7a+3b\right)+\left(4a+5b\right)⋮23\)

\(\Rightarrow46a+23b⋮23\Rightarrow23\left(2a+b\right)⋮23\) (Đúng)

Vậy \(4a+5b⋮23\) (Đpcm)

10 tháng 8 2024

Ta có: 5(7a + 3b) : 23 = k (với k thuộc N)

=> 35a + 15b = 23k => 15b = 23k - 35a

Ta có: 3(4a + 5b) = 12a + 15b = 12a + 23k - 35a

                                                = (-23a) + 23k = 23(-a + k)

Do 23(-a + k) ⋮ 23 => 3(4a + 5b) ⋮ 23 => 4a + 5b ⋮ 23 (đpcm)

 

30 tháng 12 2015

Ta có: 23a + 23b chia hết cho 23  

=> 7a + 3b + 16a + 20b chia hết cho 23  

=> 7a + 3b + 4(4a + 5b) chia hết cho 23  

Do 7a + 3b chia hết cho 23 nên 4(4a + 5b) chia hết cho 23  

Mà 4 không chia hết cho 23 nên 4a + 5b phải chia hết cho 23

30 tháng 12 2015

Ta có: 23a + 23b chia hết cho 23  

=> 7a + 3b + 16a + 20b chia hết cho 23  

=> 7a + 3b + 4(4a + 5b) chia hết cho 23  

Do 7a + 3b chia hết cho 23 nên 4(4a + 5b) chia hết cho 23  

Mà 4 không chia hết cho 23 nên 4a + 5b phải chia hết cho 23

****

5 tháng 11 2017

ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.

Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.

22 tháng 11 2019

Ta có 4a+5b chia hết cho 23 => 4(4a+5b)=16a+20b chia hết cho 23

16a+20b+7a+3b = 23a+23b chia hết cho 23

mà 16a+20b chia hết cho 23 nên 7a+3b chia hết cho 23 (dpcm)