\(a,b\ge0\)thỏa mãn a+b=1  Tìm GTLN,GTNN của 

\(N=\frac{a}...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

Ta có: \(N=\frac{a}{b+1}+\frac{b}{a+1}=\frac{a^2}{ab+a}+\frac{b^2}{ab+b}\)

             \(\ge\frac{\left(a+b\right)^2}{a+b+2ab}\ge\frac{1}{1+\frac{\left(a+b\right)^2}{2}}=\frac{1}{1+\frac{1}{2}}=\frac{2}{3}\)

Dấu = xảy ra khi \(a=b=\frac{1}{2}\)

Lại có: \(\frac{a}{b+1}=\frac{a}{2-a}\)

Do \(a;b\ge0\);  a+b=1

\(\Rightarrow0\le a\le1\)

\(\Rightarrow2-a\ge1\)

\(\Rightarrow\frac{a}{2-a}\le a\left(a\ge0\right)\) 

Tương tự suy ra \(N\le a+b=1\)

Dấu = xảy ra khi \(\left(a;b\right)=\left(0;1\right);\left(1;0\right)\)

Vậy \(N_{Min}=\frac{2}{3}\Leftrightarrow a=b=\frac{1}{2}\)

    \(N_{Max}=1\Leftrightarrow\left(a;b\right)=\left(0;1\right);\left(1;0\right)\)

17 tháng 7 2018

Ta có: \(a\sqrt{b+1}=\frac{a\sqrt{\left(b+1\right)2}}{\sqrt{2}}\le a\frac{b+1+2}{2\sqrt{2}}=\frac{ab+3a}{2\sqrt{2}}\)

Tương tự: \(b\sqrt{a+1}\le\frac{ab+3b}{2\sqrt{2}}\)

\(\Rightarrow M\le\frac{3\left(a+b\right)+2ab}{2\sqrt{2}}\le\frac{6+\frac{\left(a+b\right)^2}{2}}{2\sqrt{2}}=\frac{8}{2\sqrt{2}}=2\sqrt{2}\)

Dấu = khi a=b=1

Ta có: \(a+b=2\Rightarrow b=2-a\)

\(\Rightarrow a\sqrt{b+1}=a\sqrt{3-a}\)

Lại có: \(\hept{\begin{cases}a;b>0\\a+b=2\end{cases}}\Rightarrow0\le a;b\le2\)

Mặt khác: \(a\le2\Rightarrow3-a\ge1\)

\(\Rightarrow\sqrt{3-a}\ge1\)

\(\Rightarrow a\sqrt{3-a}\ge a\)     Do \(a\ge0\)

Tương tự suy ra \(M\ge a+b=2\)

Dấu = khi \(\left(a;b\right)=\left(0;2\right);\left(2;0\right)\)

Vậy \(M_{Max}=2\sqrt{2}\Leftrightarrow a=b=1\)

        \(M_{Min}=2\Leftrightarrow\left(a;b\right)=\left(0;2\right);\left(2;0\right)\)

17 tháng 8 2019

\(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Rightarrow2a^2+2b^2\ge a^2+2ab+b^2\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

\(\Rightarrow a+b\ge\frac{\left(a+b\right)^2}{2}\Rightarrow2\ge a+b\)

\(S=\frac{a}{a+1}+\frac{b}{b+1}=\frac{a+1}{a+1}+\frac{b+1}{b+1}-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\)

AD BĐT: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\left(x,y\in Z^+\right)\)

\(\Rightarrow\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+b+2}\ge\frac{4}{4}=1\) ( vì \(2\ge a+b\) )

\(\Rightarrow S=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\le1\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)

Vậy \(S_{max}=1\Leftrightarrow a=b=1\)

11 tháng 9 2019

1a

\(A=\frac{3}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\ge\frac{6}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\)

\(\ge10+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{4}=10+\frac{1}{16}=\frac{161}{16}\)

Dau '=' xay ra khi \(a=b=\frac{1}{2}\)

Vay \(A_{min}=\frac{161}{16}\)

11 tháng 9 2019

1b.\(B=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\ge\frac{2}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^4+b^4\right)^2}{2}}{4}\)

\(\ge6+\frac{\left[\frac{\left(a^2+b^2\right)^2}{2}\right]^2}{8}\ge6+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{32}=6+\frac{1}{128}=\frac{769}{128}\)

Dau '=' xay ra khi \(a=b=\frac{1}{2}\)

Vay \(B_{min}=\frac{769}{128}\)khi \(a=b=\frac{1}{2}\)

28 tháng 2 2020

2/\(ĐKXĐ:x\ne-1\)

\(Q=\frac{2x^2+2}{\left(x+1\right)^2}=\frac{2\left(x+1\right)^2-4\left(x+1\right)+4}{\left(x+1\right)^2}\)

  \(=2-\frac{4}{x+1}+\frac{4}{\left(x+1\right)^2}\)

Đặt \(\frac{2}{x+1}=t\)

\(\Rightarrow Q=t^2-2t+2=\left(t-1\right)^2+1\ge1\forall t\)

\(\Rightarrow minQ=1\Leftrightarrow t=1\)

                           \(\Leftrightarrow\frac{2}{x+1}=1\)

                         \(\Leftrightarrow x=1\left(tmđkxđ\right)\)             

29 tháng 2 2020

Ta có: \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{2^2}{2}=2\)

=> \(A\le\frac{2019}{2.2+2016}=\frac{2019}{2020}\)

Dấu "=" xảy ra <=> a = b = 1

18 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{ab}{c+1}=\frac{ab}{\left(c+a\right)+\left(b+c\right)}\le\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)

Tương tự cho 2 BĐT còn lại ta có: 

\(\frac{bc}{a+1}\le\frac{1}{4}\left(\frac{bc}{a+b}+\frac{bc}{a+c}\right);\frac{ac}{b+1}\le\frac{1}{4}\left(\frac{ac}{a+b}+\frac{ac}{b+c}\right)\)

Cộng theo vế 3 BĐT trên ta có: 

\(P\le\frac{1}{4}\left[\left(\frac{ab}{b+c}+\frac{ac}{b+c}\right)+\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)+\left(\frac{bc}{a+b}+\frac{ac}{a+b}\right)\right]\)

\(=\frac{1}{4}\left[\frac{a\left(b+c\right)}{b+c}+\frac{b\left(a+c\right)}{a+c}+\frac{c\left(a+b\right)}{a+b}\right]\)

\(=\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\cdot1=\frac{1}{4}\left(a+b+c=1\right)\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

18 tháng 4 2017

giúp đỡ nặng quá

21 tháng 4 2018

Ta có:\(a+b=a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\Rightarrow2\left(a+b\right)\ge\left(a+b\right)^2\Rightarrow2\ge a+b\)

\(N=1-\frac{1}{a+1}+1-\frac{1}{b+1}=2-\frac{1}{a+1}-\frac{1}{b+1}\le2-\frac{4}{a+1+b+1}\)

\(=2-\frac{4}{a+b+2}\le2-\frac{4}{2+2}=1\)

Nên GTLN của N là 1 đạt được khi \(a=b\Rightarrow2a=2a^2\Rightarrow2a\left(a-1\right)=0\Rightarrow a=1\)

27 tháng 5 2017

Nhân cả 2 vế với a+b+c 

Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0

dễ rồi nhé

27 tháng 5 2017

b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)

\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được: 

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)

=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)

=>Pmax=3/4 <=> x=y=z=1/3