\(\ge\)0 CM (a+b)\(^{^2}\)+\(\fra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2018

\(\text{Ta có : }(a-b)^2\ge0\)

\(\Leftrightarrow a^2+b^2-2ab\ge0(\text{*})\)

\(\text{Ta có :}2a(\sqrt{b}-\frac{1}{2})^2\ge0\text{ do a là số thực dương}\)

\(\Rightarrow2a(b-\sqrt{b}+\frac{1}{4})\ge0\)

\(\Leftrightarrow2ab-2a\sqrt{b}+\frac{a}{2}\ge0\text{(**)}\)

\(\text{Ta có : }2b(\sqrt{a}-\frac{1}{2})^2\ge0\text{ do b là số thực dương }\)

\(\Leftrightarrow2b(a-\sqrt{a}+\frac{1}{4})\ge0\)

\(\Leftrightarrow2ab-ab\sqrt{a}+\frac{b}{2}\ge0(\text{***})\)

Cộng (*), (**) và (***) vế theo vế, ta có:

\(a^2+b^2-2ab+2ab-2a\sqrt{b}+\frac{a}{2}+2ab-2b\sqrt{a}+\frac{b}{2}\ge0\)

\(a^2+b^2+2ab+\frac{a+b}{2}-(2a\sqrt{b}+2b\sqrt{a})\ge0\)

\(\Rightarrow(a+b)^2+\frac{a+b}{2}\ge2a\sqrt{b}+2b\sqrt{a}(đpcm)\)

16 tháng 8 2016

Chứng minh bằng biến đổi tương đương :

\(\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\) . Vì hai vế không âm nên bình phương cả hai vế : 

\(\frac{a+b}{2}\ge\frac{a+b+2\sqrt{ab}}{4}\) \(\Leftrightarrow2\left(a+b\right)\ge a+b+2\sqrt{ab}\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)

Vì bđt cuối luôn đúng nên bđt ban đầu dc chứng minh. 

Dấu "=" xảy ra khi a = b (a,b không âm)

10 tháng 6 2018

\(\text{a) }\dfrac{a+b}{2}\ge\sqrt{ab}\left(1\right)\\ \Leftrightarrow\dfrac{a+b}{2}-\sqrt{ab}\ge0\\ \Leftrightarrow\dfrac{a+b}{2}-\dfrac{2\sqrt{ab}}{2}\ge0\\ \Leftrightarrow\dfrac{a+b-2\sqrt{ab}}{2}\ge0\\ \Leftrightarrow\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\ge0\left(2\right)\)

BDT (2) luôn đúng \(\forall x\) nên BDT (1) luôn đúng \(\forall x\)

Dấu "=" xảy ra khi:

\(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}=0\\ \Leftrightarrow\sqrt{a}-\sqrt{b}=0\\ \Leftrightarrow\sqrt{a}=\sqrt{b}\\ \Leftrightarrow a=b\)

Vậy \(\dfrac{a+b}{2}\ge\sqrt{ab}\) đẳng thức xảy ra khi: \(a=b\)

b) Áp dụng BDT Cô-si có:

\(\dfrac{a+b}{2}\ge\sqrt{ab}\\ \dfrac{a+c}{2}\ge\sqrt{ac}\\ \dfrac{b+c}{2}\ge\sqrt{bc}\\ \Rightarrow\dfrac{a+b}{2}+\dfrac{a+c}{2}+\dfrac{b+c}{2}\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\\ \Rightarrow\dfrac{a+b+a+c+b+c}{2}\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\\ \Rightarrow a+b+c\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\)

Vậy \(a+b+c\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\) đẳng thức xảy ra khi : \(a=b=c\)

1 tháng 7 2019

b) \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

\(\Leftrightarrow2\left(a+b+c\right)\ge2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\)

\(\Leftrightarrow\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+a\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)

Vì BĐT cuối luôn đúng mà các phép biến đổi trên là tương đương nên BĐT ban đầu luôn đúng

Dấu "=" \(\Leftrightarrow a=b=c\)

c) \(a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\)

\(\Leftrightarrow\left(a-\sqrt{a}+\frac{1}{4}\right)+\left(b-\sqrt{b}+\frac{1}{4}\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\frac{1}{2}\right)^2+\left(\sqrt{b}-\frac{1}{2}\right)^2\ge0\)

Vì bđt cuối luôn đúng mà các phép biến đôi trên là tương đương nên bđt ban đầu luôn đúng

Dấu "=" \(\Leftrightarrow a=b=\frac{1}{4}\)

29 tháng 9 2018

Trả lời:

a. Áp dụng BĐT Cô-si: x + y\(\ge\) \(2\sqrt{xy}\) (với x,y\(\ge\)0)

Ta có: a + b\(\ge\)\(2\sqrt{ab}\)

b+c\(\ge\)\(2\sqrt{bc}\)

c+a\(\ge\)\(2\sqrt{ca}\)

\(\Rightarrow\) (a+b)(b+c)(c+a) \(\ge\)\(8\sqrt{a^2b^2c^2}\)= 8abc (đpcm)

b. Áp dụng BĐT Cô-si: \(\sqrt{ab}\)\(\le\)\(\dfrac{a+b}{2}\) ( với a,b\(\ge\)0)

Ta có: \(\sqrt{3a\left(a+2b\right)}\)\(\le\)\(\dfrac{3a+a+2b}{2}\)=\(\dfrac{4a+2b}{2}\)=2a+b

\(\Rightarrow\) \(a\sqrt{3a\left(a+2b\right)}\)\(\le\)a(2a+b) = 2a2+ab

CMTT: \(b\sqrt{3b\left(b+2a\right)}\)\(\le\)b(2b+a) = 2b2+ab

\(\rightarrow\)\(a\sqrt{3a\left(a+2b\right)}\)+\(b\sqrt{3b\left(2b+a\right)}\)\(\le\) 2a2+ab+2b2+ab

= 2(a2+b2)+2ab =6(đpcm)

c. Áp dụng BĐT Cô-si với 3 số a+b; b+c;c+a

Ta có: (a+b)(b+c)(c+a)\(\le\)\(\left(\dfrac{2\left(a+b+c\right)}{3}\right)^3\)

\(\Leftrightarrow\) 1 \(\le\) \(\dfrac{8}{27}\left(a+b+c\right)^3\)

\(\Leftrightarrow\) (a+b+c)3 \(\ge\) \(\dfrac{8}{27}\)

\(\Leftrightarrow\) a+b+c \(\ge\) \(\dfrac{3}{2}\) (1)

Lại có: (a+b)(b+c)(c+a) = (a+b+c)(ab+bc+ca) -abc

\(\Leftrightarrow\) 1= (a+b+c)(ab+bc+ca) - abc

\(\Leftrightarrow\) ab+bc+ca = \(\dfrac{1+abc}{a+b+c}\) (2)

Theo câu a. (a+b)(b+c)(c+a) \(\ge\) 8abc

\(\Leftrightarrow\) 1 \(\ge\) 8abc

\(\Leftrightarrow\) abc \(\le\)\(\dfrac{1}{8}\) (3)

Từ (1),(3) kết hợp với (2)

\(\Rightarrow\) ab+bc+ca \(\le\) \(\dfrac{1+\dfrac{1}{8}}{\dfrac{3}{2}}\) = \(\dfrac{3}{4}\) (đpcm)

NV
24 tháng 6 2019

Bình phương 2 vế:

\(\Leftrightarrow a+b+2\sqrt{ab}\ge a+b\)

\(\Leftrightarrow2\sqrt{ab}\ge0\)

\(\Leftrightarrow\sqrt{ab}\ge0\) (luôn đúng)

Vậy \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)

Dấu "=" xảy ra khi \(\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)

24 tháng 6 2019

với a;b luôn lớn hơn hoặc bằng 0 ta luôn có:

\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\\ \Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)^2\ge\left(\sqrt{a+b}\right)^2\\ \Leftrightarrow a+2\sqrt{ab}+b\ge a+b\)

vì a;b luôn\(\ge\)0 nên \(2\sqrt{ab}\) luôn\(\ge\) 0 nên:

\(a+2\sqrt{ab}+b\) luôn lớn hơn hoặc bằng a+b

=>\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)(ĐPCM)

28 tháng 7 2017

a)Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)

\(\le2\cdot\left(1+1+1\right)\left(a+b+c\right)\le6\)

\(\Rightarrow VT^2\le6\Rightarrow VT\le\sqrt{6}=VP\)

Xảy ra khi \(a=b=c=\frac{1}{3}\)

b)Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{a+\sqrt{b+\sqrt{2c}}}+\sqrt{b+\sqrt{c+\sqrt{2a}}}+\sqrt{c+\sqrt{a+\sqrt{2b}}}\right)^2\)

\(\le\left(1+1+1\right)\left(a+b+c+Σ\sqrt{b+\sqrt{2c}}\right)\)

\(=3\left(6+\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)\)

Đặt \(A^2=\left(\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)^2\)

\(\le\left(1+1+1\right)\left(a+b+c+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\)

\(=3\left(6+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\)

Đặt tiếp: \(B^2=\left(\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)^2\)

\(\le2\cdot\left(1+1+1\right)\left(a+b+c\right)\le36\Rightarrow B\le6\)

\(\Rightarrow A^2\le3\left(6+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\le3\cdot12=36\Rightarrow A\le6\)

\(\Rightarrow VT^2\le3\left(6+\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)\)

\(\le3\left(6+6\right)=3\cdot12=36\Rightarrow VT\le6=VP\)

Xảy ra khi \(a=b=c=2\)

5 tháng 8 2017

b2 \(\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}=\sqrt{x}.\sqrt{1-\frac{1}{x}}+\sqrt{y}.\)\(\sqrt{y}.\sqrt{1-\frac{1}{y}}+\sqrt{z}.\sqrt{1-\frac{1}{z}}\)rồi dung bunhia là xong

5 tháng 8 2017

A= \(\frac{1}{a^3}\)\(\frac{1}{b^3}\)\(\frac{1}{c^3}\)\(\frac{ab^2}{c^3}\)\(\frac{bc^2}{a^3}\)\(\frac{ca^2}{b^3}\)

Svacxo:
3 cái đầu >= \(\frac{9}{a^3+b^3+c^3}\)

3 cái sau >= \(\frac{\left(\sqrt{a}b+\sqrt{c}b+\sqrt{a}c\right)^2}{a^3+b^3+c^3}\)

Cô-si: cái tử bỏ bình phương >= 3\(\sqrt{abc}\)

=> cái tử >= 9abc= 9 vì abc=1 
Còn lại tự làm